полиэдральные многослойные углеродные наноструктуры фуллероидного типа

Классы МПК:C01B31/02 получение углерода
Автор(ы):,
Патентообладатель(и):Закрытое акционерное общество "АСТРИН"
Приоритеты:
подача заявки:
2000-09-21
публикация патента:

Изобретение предназначено для химической промышленности и может быть использовано при получении фрикционных материалов и пластиков. Полиэдральные многослойные наноструктуры фуллероидного типа с межслоевым расстоянием 0,34-0,36 нм, средним размером частиц 60-200 нм, насыпной плотностью 0,6-0,8 г/см3, пикнометрической плотностью 2,2полиэдральные многослойные углеродные наноструктуры   фуллероидного типа, патент № 21967310,1 г/см3, показателем термобароустойчивости к графитизации при 3000oС не менее 50 Кбар, рентгенографическим показателем графитизации 0,01-0,02 и удельным электрическим сопротивлением при давлении 120 МПа не более 2,5полиэдральные многослойные углеродные наноструктуры   фуллероидного типа, патент № 219673110-4 Омполиэдральные многослойные углеродные наноструктуры   фуллероидного типа, патент № 2196731м получают распылением графитового анода в плазме дугового разряда в атмосфере инертного газа. Катодный осадок имеет плотную корку и рыхлую сердцевину. Корку катодного осадка измельчают и подвергают окислению в газовой фазе. Продукт окисления разделяют электрофлотацией. Отбирают всплывшую фракцию 100-300 нм, высушивают, смешивают с сухим гидроксидом, галогенидом, нитратом щелочного металла или их смесью. Жидкофазное окисление ведут в расплаве. Окисленный продукт снова разделяют электрофлотацией, нейтрализуют, промывают. Изобретение позволяет использовать ту часть катодного осадка, которая раньше не использовалась. 2 ил.
Рисунок 1, Рисунок 2

Формула изобретения

Полиэдральные многослойные углеродные наноструктуры фуллероидного типа с межслоевым расстоянием 0,34-0,36 нм, средним размером частиц 60-200 нм, насыпной плотностью 0,6-0,8 г/см3, пикнометрической плотностью 2,2полиэдральные многослойные углеродные наноструктуры   фуллероидного типа, патент № 21967310,1 г/см3, показателем термобароустойчивости к графитизации при 3000oС не менее 50 Кбар, рентгенографическим показателем графитизации 0,01-0,02 и удельным электрическим сопротивлением при давлении 120 МПа не более 2,5полиэдральные многослойные углеродные наноструктуры   фуллероидного типа, патент № 219673110-4 Омполиэдральные многослойные углеродные наноструктуры   фуллероидного типа, патент № 2196731м.

Описание изобретения к патенту

Изобретение относится к химии неметаллических соединений, а именно к химии углерода, и, в частности, к получению многослойных углеродных наноструктур фуллероидного типа. Указанные структуры обладают высокой химической стабильностью при существенной пористости, а также высокой термобароустойчивостью и могут найти применение в различных отраслях химической технологии.

Многослойные углеродные наноструктуры фуллероидного типа образуются как побочный продукт при получении фуллеренов и нанотрубок термическим распылением графитового анода в плазме дугового разряда, горящей в атмосфере инертного газа, например, аргона или гелия. Продукты распыления осаждаются на охлаждаемых стенках камеры и, в основном, на поверхности катода. При этом выход целевого продукта - фуллеренов или нанотрубок - зависит от нескольких факторов, в частности, от поддержания межэлектродного расстояния на фиксированном уровне и от поддержания минимального возможного тока дуги, необходимого для ее стабильного горения. Случайное изменение этих параметров на несколько минут превращает катодный осадок в "бесполезный твердый кусок запекшегося графита" [Ebbesen T.W. Ann. Rev. Mater. Sci., 1994, V 24, p.235; Ebbesen T. W. Phys. Today, 26.06.1996]. Реальный катодный осадок (катодный депозит) может представлять собой сложный агломерат, в центральной рыхлой части которого содержится до 10% масс нанотрубок, а в более плотной коре содержатся преимущественно многообразные наноструктуры, считающиеся примесями, затрудняющими исследование и использование нанотрубок. Некоторое количество указанных наноструктур есть и в центральной части катодного депозита. Эти частицы никто специально не выделял и не идентифицировал.

Наиболее близкими к заявленным являются многослойные наноструктуры фуллероидного типа - углеродные нанотрубки (з-ка JP 07-165406, кл. С 01 В 31/00, 31/02, 1995, реферат), полученные выделением из катодного осадка и имеющие широкий диапазон размеров.

Недостатком известных полиэдральных многослойных наноструктур является большое количество примесей и значительный разброс их параметров, а также то, что корка катодного осадка, содержащая некоторое количество таких наноструктур, не используется и считается отходом.

Техническая задача, на решение которой направлено заявляемое изобретение, состоит в выделении полиэдральных многослойных наноструктур фуллероидного типа как целевого продукта.

Выделенные полиэдральные многослойные углеродные наноструктуры фуллероидного типа имеют межслоевое расстояние 0,34-0,35 нм, средний размер частиц 60-200 нм, насыпную плотность 0,6-0,8 г/см3, пикнометрическую плотность 2,2полиэдральные многослойные углеродные наноструктуры   фуллероидного типа, патент № 21967310,1 г/см3, показатель термобароустойчивости к графитизации при 3000oС не менее 50 КБар, рентгенографический показатель графитизации 0,01-0,02, удельное электрическое сопротивление при давлении 120 МПа не более 2,5полиэдральные многослойные углеродные наноструктуры   фуллероидного типа, патент № 219673110-4 Омполиэдральные многослойные углеродные наноструктуры   фуллероидного типа, патент № 2196731м.

Заявляемое изобретение далее поясняется примерами, но не ограничено ими.

Пример 1.

Электродуговой эррозией анодного графитового стержня сечением 100 мм2 с графитовым катодом того же сечения при плотности тока 200 А/см2 и падении напряжения на дуге 24 B в гелиевой атмосфере (давление Не 70 торр) получают катодный осадок. Осадок представляет собой трубчатую бахромчатую структуру длиной около 120 мм и диаметром около 35 мм неоднородной плотности с рыхлой сердцевиной и плотной оболочкой (коркой) с внутренним диаметром 9-10 мм и толщиной около 2 мм.

Корку отделяют и измельчают до порошка со средней дисперсностью 200-800 нм. Порошок смешивают с 5 мас.% диспергированного нитрата калия и помещают во вращающуюся трубчатую печь, в которой проводят газофазное окисление при температуре 550-600oС.

После газофазного окисления порошок разделяют электрофлотацией, отбирая всплывающую фракцию дисперсностью 100-300 нм. Отобранную фракцию высушивают, смешивают с 5 мас. % сухого мелкодисперсного нитрата калия и помещают в расплав гидроксида калия, где подвергают жидкофазному окислению при температуре около 500oС.

Расплав охлаждают, растворяют в воде, мелкодисперсный продукт отделяют электрофлотацией, нейтрализуют кислотой, тщательно промывают на фильтре дистиллированной водой и переводят в дисперсию в органическом растворителе, например, диметилформамиде.

Пример 2.

Продукт получают, как в примере 1, но жидкофазное окисление проводят в расплаве смеси нитратов лития и натрия в эквимольном соотношении.

Пример 3.

Продукт получают, как в примере 1, но жидкофазное окисление проводят в расплаве хлоридов лития и калия эвтектического состава.

Пример 4.

Продукт получают, как в примере 1, но жидкофазное окисление проводят в расплаве хлорида калия и гидроксида натрия в соотношении 1:4.

Для определения физико-химических параметров продукт отделяют от растворителя и исследуют по следующим параметрам.

Определяют плотность полученного материала: насыпная плотность равна 0,6-0,8 г/см3, пикнометрическая плотность равна 2,2полиэдральные многослойные углеродные наноструктуры   фуллероидного типа, патент № 21967310,1 г/см3.

Рентгенографически определяют межслоевое расстояние в многослойных частицах, которое равно 0,34-0,36 нм, что характерно для соединений углерода фуллероидного типа.

Рентгенографически определяют количество аморфизированного графита, оставшегося в продукте (показатель графитизации), которое составляет 0,01-0,02.

Определяют сорбционные свойства продукта по отношению к четыреххлористому углероду, указанный показатель, равный 50 мг/г, свидетельствует о практическом отсутствии аморфного графита в продукте.

Под давлением из продукта формируют таблетку, на которой под давлением 120 МПа измеряют удельное сопротивление, которое не превышает 2,5полиэдральные многослойные углеродные наноструктуры   фуллероидного типа, патент № 219673110-4 Омполиэдральные многослойные углеродные наноструктуры   фуллероидного типа, патент № 2196731м. Для сравнения удельное сопротивление графита составляет 0,5полиэдральные многослойные углеродные наноструктуры   фуллероидного типа, патент № 219673110-2 Омполиэдральные многослойные углеродные наноструктуры   фуллероидного типа, патент № 2196731м.

Показатель термобароустойчивости определяют на установке для синтеза технических алмазов; при 3000oС материал выдерживает давление 50 Кбар (50000 ата) без изменения структурных характеристик.

С помощью просвечивающего электронного микроскопа JЕМ - 100 S определяют форму полученных частиц и их размер. Типичные наноструктуры представлены на фиг.1 и 2.

На фиг. 1 поз. а) представлена наиболее характерная полиэдральная многослойная частица длиной 150 нм с внутренним щелевидным капилляром. В поз. б) представлены похожие частицы, расположившиеся в плоскости прохождения электронного пучка; ясно видна их конфигурация и конфигурация их щелевидного капилляра.

На фиг.2 в более крупном (в 2,5 раз) масштабе представлена полиэдральная разветвленная частица без внутреннего капилляра. В правом нижнем углу фиг.2 видна нанотрубка, присутствие которой в материале в малых количествах возможно.

Полученный продукт в силу своей высокой дисперсности и термобароустойчивости находит применение как противоизносная добавка к антифрикционным материалам, в частности, эпоксидоуглепластикам, а также в качестве добавки в пластики для повышения электропроводности и снятия статического электричества.

Изобретение позволяет использовать как полезный продукт ту часть катодного осадка, которая ранее шла в отход производства фуллеренов и нанотрубок.

Класс C01B31/02 получение углерода

электродная масса для самообжигающихся электродов ферросплавных печей -  патент 2529235 (27.09.2014)
способ модифицирования углеродных нанотрубок -  патент 2528985 (20.09.2014)
свч плазменный конвертор -  патент 2522636 (20.07.2014)
пористые угреродные композиционные материалы и способ их получения, а также адсорбенты, косметические средства, средства очистки и композиционные фотокаталитические материалы, содержащие их -  патент 2521384 (27.06.2014)
полимерный нанокомпозит с управляемой анизотропией углеродных нанотрубок и способ его получения -  патент 2520435 (27.06.2014)
способ получения углерод-металлического материала каталитическим пиролизом этанола -  патент 2516548 (20.05.2014)
способ получения углеродных наноматериалов с нанесённым диоксидом кремния -  патент 2516409 (20.05.2014)
тонкодисперсная органическая суспензия углеродных металлсодержащих наноструктур и способ ее изготовления -  патент 2515858 (20.05.2014)
способ получения сажи, содержащей фуллерены и нанотрубки, и устройство для его осуществления -  патент 2511384 (10.04.2014)
способ заполнения внутренней полости нанотрубок химическим веществом -  патент 2511218 (10.04.2014)
Наверх