способ поворота управляющей аэродинамической поверхности летательного аппарата
Классы МПК: | B64C13/50 с помощью электрических средств |
Автор(ы): | Григорьев В.Г., Григорьев Д.В., Григорьев В.В. |
Патентообладатель(и): | Григорьев Владимир Григорьевич, Григорьев Дмитрий Владимирович, Григорьев Василий Владимирович |
Приоритеты: |
подача заявки:
2001-01-15 публикация патента:
10.12.2002 |
Изобретение относится к области средств управления для летательных аппаратов. Способ характеризуется использованием аэродинамической поверхности, дополнительной аэродинамической поверхности, установленных соответственно на оси вращения и дополнительном валу, рулевой машины, рычага с цилиндрическим выступом, вилки с прорезью для цилиндрического выступа, средств для измерения угла атаки и коэффициентов подъемной силы для каждой из поверхностей. Предусмотрено вычислительное устройство, позволяющее формировать сигнал управления поворотом дополнительной поверхности с учетом отношения производных по углу атаки коэффициентов подъемной силы каждой из поверхностей. Изобретение направлено на уменьшение аэродинамического сопротивления. 2 ил.
Рисунок 1, Рисунок 2
Формула изобретения
Способ поворота управляющей аэродинамической поверхности летательного аппарата, который состоит в том, что предварительно эту поверхность устанавливают на корпусе летательного аппарата с возможностью вращения, на задней кромке этой поверхности устанавливают дополнительную управляющую аэродинамическую поверхность с возможностью вращения, внутри корпуса летательного аппарата устанавливают рулевую машину, вычислительное устройство и усилитель, в процессе полета летательного аппарата для поворота управляющей аэродинамической поверхности подают на вычислительное устройство электрический сигнал Uтр, пропорциональный требуемому значению Fтр угла поворота этой поверхности, измеряют текущие значения угловой скорости







Описание изобретения к патенту
Изобретение относится к способам поворота управляющих аэродинамических поверхностей (УАП) летательных аппаратов (ЛА) и может быть использовано при создании новых и модернизации существующих приводов поворота УАП ЛА. Известен способ поворота УАП ЛА [1], который состоит в том, что предварительно УАП устанавливают на корпусе ЛА с возможностью вращения, внутри корпуса ЛА устанавливают рулевую машину (РМ), вычислительное устройство (ВУ) и усилитель (У), выходной вал РМ механически соединяют с осью УАП внутри корпуса ЛА, при повороте УАП подают на ВУ электрический сигнал Uтр, пропорциональный требуемому значению Fтр угла поворота УАП, измеряют текущее значение Fт угла поворота УАП, формируют электрический сигнал Uт, пропорциональный значению Fт, вычисляют разность dU сигналов Uтр и Uт, усиливают сигнал dU и подают на РМ этот усиленный сигнал, в соответствии с которым перемещают выходной вал РМ до достижения равенства сигнала Uт сигналу Uтр. Недостатком этого способа является большая мощность РМ, потребная для быстрого поворота УАП, имеющей большую площадь и значительный шарнирный момент. Известен также способ поворота УАП ЛА [2], который состоит в том, что предварительно УАП устанавливают на корпусе ЛА с возможностью вращения, на задней кромке УАП устанавливают дополнительную управляющую аэродинамическую поверхность (ДУАП) с возможностью вращения, внутри корпуса ЛА устанавливают рулевую машину (РМ), вычислительное устройство (ВУ) и усилитель (У), выходной вал РМ механически соединяют с осью ДУАП, причем это механическое соединение прокладывают через ось УАП и внутри профиля УАП, в процессе полета ЛА при повороте УАП подают на ВУ электрический сигнал Uтр, пропорциональный требуемому значению Fтр угла поворота УАП, измеряют текущие значения угла Fт, угловой скорости
















где 2Cxf - коэффициент трения плоской пластины с длиной, равной средней хорде В УАП; М - число Маха полета ЛА;


а коэффициент Схв волнового сопротивления, являющийся составной частью Сх на сверхкритических скоростях (М>Мкр), определяется формулой

где х=(М-Мкр)/(1-Мкр). Анализ формул (1)...(3) показывает, что с увеличением толщины С профиля УАП величина Схпр и Схв возрастает. Следовательно, при всех скоростях полета ЛА сила лобового сопротивления УАП тем больше, чем больше толщина С профиля УАП. Целью заявляемого изобретения является устранение указанного недостатка прототипа, а именно, уменьшение аэродинамического сопротивления УАП, на которой установлена ДУАП. Для достижения этой цели предварительно на корпусе ЛА позади оси вращения УАП устанавливают дополнительный вал с возможностью вращения, ось вращения которого параллельна оси вращения УАП. Один конец этого вала внутри корпуса ЛА механически соединяют с выходным валом РМ, а на другом конце этого вала вне корпуса ЛА закрепляют вилку, в прорезь которой на скользящей посадке вводят цилиндрический выступ, закрепленный на одном конце рычага, другой конец которого закреплен на оси ДУАП. Также предварительно в ВУ вводят значения площадей УАП и ДУАП, расстояния между осями вращения УАП и ДУАП, расстояния между осями вращения УАП и дополнительного вала, длины рычага и отношения производных по углу атаки коэффициентов подъемной силы УАП и ДУAП. В процессе полета ЛА при повороте УАП вычисляют значение Fтр и значение Fвт угла поворота дополнительного вала, соответствующее значению Fтр, формируют электрический сигнал Uвт, пропорциональный значению Fвт с соответствующим значением коэффициента пропорциональности, измеряют текущее значение Fв угла поворота дополнительного вала, формируют электрический сигнал Uв, пропорциональный значению Fв с соответствующим значением коэффициента пропорциональности, вычисляют сумму Uc сигналов Uв и Uc1 и перемещают выходной вал РМ до достижения равенства сигналов Uc и Uвт после окончания переходного процесса. Таким образом, в заявляемом способе механическая связь между выходным валом РМ и ДУАП осуществляется через дополнительный вал с закрепленной на нем вилкой и рычаг, закрепленный на оси ДУАП, и не проходит через ось УАП и внутри профиля УАП. Это позволяет делать профиль УАП значительно тоньше, чем в прототипе, в результате чего уменьшается аэродинамическое сопротивление УАП по сравнению с прототипом. Существо заявляемого изобретения поясняется фигурами на чертежах. На фиг. 1 изображена кинематическая схема механических связей между УАП, ДУАП и дополнительного вала. На фиг. 2 изображена принципиальная конструктивная схема привода поворота УАП, реализующего предложенный способ. На фиг. 1 обозначено: 1 - УАП; 2 - ДУАП; 3 - дополнительный вал; 4 - вилка; 5 - рычаг; 6 - выступ рычага 5; ОхОх - линия на корпусе ЛА, параллельная продольной оси ЛА; Ор - положение оси вращения УАП 1 на корпусе ЛА; Ов - положение оси вращения дополнительного вала 3 на корпусе ЛА; Од - положение оси вращения ДУАП 2; В - положение оси выступа 6; ОрОд - прямая линия, проходящая через оси вращения УАП 1 и ДУАП 2; ОвВ - прямая линия, проходящая через ось вращения дополнительного вала 3 и ось выступа 6; А - точка пересечения прямой ОрОд с прямой ОвВ; Lpв - расстояние между осями вращения УАП 1 и дополнительного вала 3; Lp - расстояние между осями вращения УАП 1 и ДУАП 2; Lд - расстояние между осью вращения ДУАП 2 и осью выступа 6, т.е. длина рычага 5; Fт - текущее значение угла отклонения УАП 1 от ее нейтрального положения; Fв - текущее значение угла отклонения дополнительного вала 3 от его нейтрального положения; Fд - текущее значение угла отклонения ДУАП 2 от ее нейтрального положения при нейтральном положении УАП 1;





Unp=Кт

где Кт - коэффициент пропорциональности, и вычисляют требуемое значение Fвт угла поворота дополнительного вала 3, соответствующее значению Fтр. Значение Fвт определяют в результате решения методом последовательных приближений следующего трансцендентного уравнения

где

которое получено в результате анализа треугольников АВОд и ОрОдВ (фиг.1) с использованием теоремы синусов и с учетом того, что после окончания переходного процесса отклонения УАП 1 на угол Fт выполняется соотношение

В ВУ формируют электрический сигнал Uвт, пропорциональный вычисленному значению Fвт (2)
Uвт=Kв

где Kв - коэффициент пропорциональности. С помощью соответствующих датчиков измеряют текущие значения угла поворота Fв дополнительного вала 3, угловой скорости



Uв=Кв



где Кус, Куу - соответствующие коэффициенты пропорциональности. Эти сигналы подают на соответствующие входы ВУ, где вычисляют сумму Uc этих сигналов, которая с учетом (6)-(8) равна

Затем в ВУ вычисляют разность dU сигналов Uвт и Uc, которая с учетом выражений (5) и (9) равна

где
dFв=Fвт-Fв. (11)
Полученный сигнал dU усиливают и подают на РМ. В результате выходной вал РМ начинает перемещаться, поворачивая вал 3 с вилкой 4 и изменяя значение угла Fв в сторону уменьшения разности dFв. При этом через выступ 5, находящийся в прорези вилки 4, поворачивается рычаг 6 и скрепленная с ним ДУАП 2. В результате изменяется значение Fд угла поворота ДУАП 2, являющегося углом атаки ДУАП 2 в воздушном потоке. Поэтому изменяется значение создаваемой ДУАП 2 аэродинамической управляющей силы Yд

где q - скоростной напор. Момент силы Yд относительно оси Од вращения ДУАП 2 уравновешивается моментом сил реакции выступа 6 в вилке 4. Поэтому сила Yд относительно оси Ор вращения УАП 1 приложена в точке Од и при изменении ее значения изменяется значение создаваемого ею момента Mд относительно этой оси
Мд=Yд

Под действием этого момента изменяется значение Fт угла поворота УАП 1, являющегося углом атаки УАП 1 в воздушном потоке. В результате этого изменяется значение создаваемой УАП 1 аэродинамической управляющей силы Yр

Так как знак угла атаки Fт противоположен знаку угла атаки Fд, то сила Yp направлена противоположно направлению силы Yд и момент Мшр
Мшр=Yp

силы Yд относительно оси Ор вращения УАП 1 направлен противоположно направлению момента Мд. Поэтому поворот УДП 1 закончится тогда, когда после окончания переходного процесса наступит равенство моментов Мшр и Mд
Мшр=Мд. (16)
При достижении равенства
Fв=Fвт, (17)
после окончания переходного процесса поворота УАП 1 значения



при нулевых значениях соответствующих углов
Fт=0, Fд=0, Fв=0. (19)
При подаче на четвертый вход входного сигнала Uтр (1) в ВУ 9 вычисляют значение
Fвт (2)
Fвт

соответствующее принятому значению
Fтр

Uв=0, Uyc=0, Uуу=0, (21)
поступающие соответственно на первый, второй и третий входы ВУ 9, а в ВУ 9 формируется сигнал
Uвт

dU=Кв


Fв

При повороте вилки 8 перемещается находящийся в ее прорези выступ 6 рычага 5, в результате чего поворачивается скрепленная с рычагом 5 ДУАП 3 на угол
Fд

и в соответствии с выражениями (12) и (13) создаются
Yд


Под действием момента Мд (23) начинает поворачиваться УАП 1. При этом возрастают значения углового ускорения



В результате на выходах ДУС 13 и ДУУ 14 формируются соответственно сигналы
Uyc


поступающие соответственно на второй и третий входы ВУ 9 как сигналы гибких отрицательных обратных связей, и создаются сила Yp и момент Мшр, для которых с учетом (14), (15) и (24) справедливо
Yp


Появление сигналов (22) и (25) приводит к уменьшению сигнала dU (10), что вызывает уменьшение скорости перемещения выходного вала РМ 11 и вращения ДП 7, а с учетом момента Мшр (26), противодействующего повороту УАП 1, замедляется скорость этого поворота. Поворот УАП 1 прекратится при тех значениях углов Fт и Fд, при которых после окончания переходного процесса выполняется равенство (16), а перемещение выходного вала РМ 11 и вращение ДП 7 прекратятся при достижения равенства (17) после окончания переходного процесса. При этом УАП 1 повернется на требуемый угол Fтр, а ДП 7 повернется на угол Fвт (2), соответствующий углу Fтр. Источники информации
1. Костин С. В. , Петров Б.И., Гамынин Н.С., "Рулевые приводы", - М., "Машиностроение", 1973 г., стр. 10, 15, рис. 1.2, 1.5. 2. Григорьев В.Г., Григорьев Д.В., "Рулевой привод управляющей аэродинамической управляющей поверхности летательного аппарата". Авторское свидетельство N 1794804 от 8.10.1992 г.
Класс B64C13/50 с помощью электрических средств