способ получения медно-никелевого проводника высокой электропроводимости

Классы МПК:H01B1/02 содержащие в основном металлы и(или) сплавы 
C22C9/06 с никелем или кобальтом в качестве следующего основного компонента
Автор(ы):, ,
Патентообладатель(и):Назырова Наталья Ивановна,
Леонов Михаил Павлович,
Сярг Александр Васильевич
Приоритеты:
подача заявки:
2001-04-23
публикация патента:

Изобретение относится к области электротехники, в частности к технологии получения проводников с высокой электропроводимостью. Задача изобретения - получение проводника с высокой электропроводимостью, превышающей значения аналогов в десятки и сотни раз. Задача достигается тем, что на медную или никелевую проволоку-основу с высоким классом обработки поверхности в вакууме наносят по всему ее периметру токопроводящий слой сплава меди и никеля с диффузией сплава в поверхностный слой металла проволоки-основы, наносят на сплав защитный слой металла, составляющего пару медь - никель с металлом проволоки-основы с диффузией металла в поверхностный слой сплава, отжигают в вакууме при 850 - 950oС в течение 30 - 180 мин и затем естественно охлаждают вместе с нагревательным устройством до комнатной температуры, при этом для изготовления проводника используют медь и никель чистотой не менее 99,99. Техническим результатом данного изобретения является создание проводника высокой электропроводимости, значительно превышающей электропроводимость аналогов, а также то, что диаметр проволоки, взятой за основу, может быть любым, что в производстве используют широко распространенные недорогие металлы, что возможно получение провода любой длины с механическими качествами провода, взятого за основу. 1 ил., 1 табл.

Формула изобретения

Способ получения медно-никелевого проводника высокой электропроводимости путем нанесения на проволоку-основу металлических слоев, отличающийся тем, что на медную или никелевую проволоку-основу с высоким классом обработки поверхности в вакууме наносят по всему ее периметру слой сплава меди и никеля с диффузией сплава в поверхностный слой металла проволоки-основы, наносят на сплав защитный слой металла, составляющего пару медь - никель с металлом проволоки-основы с диффузией металла в поверхностный слой сплава, отжигают в вакууме при 850 - 950oС в течение 30 - 180 мин и затем естественно охлаждают вместе с нагревательным устройством до комнатной температуры, при этом для изготовления проводника используют медь и никель чистотой не менее 99,99.

Описание изобретения к патенту

Изобретение относится к области электротехники и, в частности, к технологии получения проводников с высокой электропроводимостью.

Известно, что высокой электропроводимостью обладают цветные металлы - медь и алюминий, их сплавы, а также драгоценные металлы - золото, серебро. Электропроводимость других металлов, например железа, значительно ниже. (Журавлева Л.В. Электроматериаловедение. - М., 2000, с. 31-46).

Значения удельного электрического сопротивления способ получения медно-никелевого проводника высокой   электропроводимости, патент № 2190891, характеризующего электропроводность указанных материалов, представлены в таблице.

Однако абсолютные величины удельного электрического сопротивления вышеназванных материалов, обладающих высокой электропроводимостью в настоящее время являются на самом деле низкими и выступают как фактор, сдерживающий уровень развития техники.

В электротехнической, радиотехнической, электронной и других областях науки и производства требуются материалы с электропроводностью, значительно превышающей электропроводность вышеуказанных аналогов.

Задача изобретения - получение проводника с высокой электропроводимостью из широко распространенных материалов с доступной технологией изготовления, с электропроводностью, превышающей значения аналогов в десятки и сотни раз.

Задача достигается тем, что эффект высокой проводимости формируется в слое сплава, состоящего из двух металлов и представляющего собой токопроводящую тонкостенную трубку-прослойку с поверхностями, близкими к идеальной при диффузионном взаимодействии со слоями металлов, примыкающих к трубке-прослойке внутри и снаружи.

На чертеже показан поперечный разрез проводника с высокой проводимостью.

Для этого в среде вакуума на подготовленную с высоким классом обработки поверхность медной или никелевой проволоки-основы 1 наносят по всему ее периметру токопроводящий слой сплава 2 меди и никеля толщиной, обеспечивающей неразрывность токопроводящего слоя сплава 2 с диффузией сплава 2 в поверхностный слой металла проволоки - основы. Затем на токопроводящий слой сплава 2 наносят слой металла 3, составляющего пару медь - никель с металлом проволоки-основы 1, толщиной, обеспечивающей защиту от механических повреждений токопроводящего слоя сплава 2 с диффузией металла в поверхностный слой сплава. Полученный проводник отжигают в вакууме при 850 - 950oС в течении 30 - 180 мин и затем естественно охлаждают вместе с нагревательным устройством до комнатной температуры, при этом для изготовления проводника используют медь и никель чистотой не менее 99,99.

Операции по нанесению слоев проводят без изъятия изделия из вакуумной среды с целью исключения окисления токопроводящего слоя.

Длина изделия определяется возможностями вакуумного оборудования.

Проведение данных операций в представленной последовательности приводит к получению нового технического результата - проводника с высокой электропроводимостью. Электрическое сопротивление данного проводника находится в экспоненциальной зависимости от чистоты применяемых материалов - меди и никеля. В интервале значений чистоты материалов от 99,99 и выше электрическое сопротивление понижается (в сравнении с электротехническим стандартом - медью MM, способ получения медно-никелевого проводника высокой   электропроводимости, патент № 2190891 ==0,017241 мкОмспособ получения медно-никелевого проводника высокой   электропроводимости, патент № 2190891м) соответственно в 14 раз и более и определяется по установленной эмпирическим путем формуле:

способ получения медно-никелевого проводника высокой   электропроводимости, патент № 2190891 = способ получения медно-никелевого проводника высокой   электропроводимости, патент № 2190891oexp(-способ получения медно-никелевого проводника высокой   электропроводимости, патент № 2190891(R)V),

где способ получения медно-никелевого проводника высокой   электропроводимости, патент № 2190891 - сопротивление проводника, мкОмспособ получения медно-никелевого проводника высокой   электропроводимости, патент № 2190891м;

способ получения медно-никелевого проводника высокой   электропроводимости, патент № 2190891o - удельное сопротивление меди 0,017241 мкОмспособ получения медно-никелевого проводника высокой   электропроводимости, патент № 2190891м;

способ получения медно-никелевого проводника высокой   электропроводимости, патент № 2190891(R) - физическая константа, зависящая от квалитета поверхности, на которую наносится сплав. При чистоте обработки поверхности проволоки-основы по 14 классу способ получения медно-никелевого проводника высокой   электропроводимости, патент № 2190891(R) =1,65способ получения медно-никелевого проводника высокой   электропроводимости, патент № 2190891102;

V - содержание примесей в материале в %, от 0,01 и ниже.

Проводник с подготовленной по 14 классу обработки поверхностью, при диаметре проволоки-основы в 1,0 мм, толщине нанесенного в вакууме глубиной 10-6 мм рт. ст. токопроводящего слоя сплава меди и никеля в объемной пропорции 50% на 50% 2,5 мкм и толщине нанесенного в среде вакуума глубиной 10-6 мм рт. ст. защитного слоя металла, составляющего пару медь - никель с металлом проволоки-основы, 10 мкм, с чистотой материалов 99,99, имеет электрическое сопротивление способ получения медно-никелевого проводника высокой   электропроводимости, патент № 2190891 =0,00123 мкОмспособ получения медно-никелевого проводника высокой   электропроводимости, патент № 2190891м, что в 14 раз ниже в сравнении с аналогом-проводником из меди.

Достоинство полученного по данной технологии проводника высокой электропроводимости состоит в том, что его электропроводимость значительно выше электропроводимости аналогов, что диаметр проволоки, взятой за основу, может быть любым, что в производстве используют широко распространенные, недорогие материалы, что возможно получение провода любой длины с механическими качествами провода, взятого за основу.

Класс H01B1/02 содержащие в основном металлы и(или) сплавы 

способ нанесения смеси углерод/олово на слои металлов или сплавов -  патент 2525176 (10.08.2014)
медный сплав и способ получения медного сплава -  патент 2510420 (27.03.2014)
способ получения покрытия, содержащего углеродные нанотрубки, фуллерены и/или графены -  патент 2483021 (27.05.2013)
катанка из алюминиевого сплава -  патент 2480852 (27.04.2013)
медный сплав cu-ni-si-co для материалов электронной техники и способ его производства -  патент 2413021 (27.02.2011)
резистивный материал -  патент 2330342 (27.07.2008)
сплав на основе алюминия для электрических проводников -  патент 2196841 (20.01.2003)
токопроводящая паста на основе порошка серебра, способ получения порошка серебра и органическое связующее для пасты -  патент 2177183 (20.12.2001)
состав для получения токопроводящей пленки на кремнеземсодержащей подложке -  патент 2169406 (20.06.2001)
токопроводящая композиция для электродов газоразрядных индикаторных панелей переменного тока -  патент 2144226 (10.01.2000)

Класс C22C9/06 с никелем или кобальтом в качестве следующего основного компонента

Наверх