устройство автоматического регулирования плоскостности полос
Классы МПК: | B21B37/28 управление плоскостностью или профилем при прокатке полос или листов |
Автор(ы): | Божков А.И., Настич В.П., Складчиков В.М., Титов Е.В., Чеглов А.Е. |
Патентообладатель(и): | Открытое акционерное общество "Новолипецкий металлургический комбинат", Липецкий государственный технический университет |
Приоритеты: |
подача заявки:
2000-08-11 публикация патента:
27.09.2002 |
Изобретение относится к прокатному производству и может быть использовано в автоматизированных системах управления качеством прокатываемых полос на непрерывных тонколистовых станах. Технический результат - улучшение геометрических характеристик проката. Устройство содержит измеритель неплоскостности, измерители усилий и скоростей прокатки, системы гидроизгиба и охлаждения прокатных валков, блок расчета разностей между величинами станочных профилировок, усилий и скоростей прокатки в j-й (j=1,...,n-1) и последней n-й клетях стана, а также блоки расчета регулировочных уставок гидроизгиба и подачи охлаждающей жидкости для j-й клети и последней n-й клети стана. Новым в устройстве является то, что оно снабжено измерителем толщины подката по ширине, установленным перед первой клетью прокатного стана, арифметическим блоком определения локальных утолщений на подкате и запоминания их местоположения и системой дифференцированной подачи смазки по длине бочки валков в первых клетях стана. Предлагаемое устройство позволит стабилизировать процесс прокатки в первых клетях стана, увеличить выход годного и улучшить плоскостность холоднокатаных полос за счет предотвращения образования локальной неплоскостности в первых клетях непрерывного стана. 4 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4
Формула изобретения
Устройство автоматического регулирования плоскостности полос на n-клетевом прокатном стане, содержащее блок технологической автоматики, измерители усилий и скоростей прокатки, блок формирования уставок гидроизгиба и охлаждения валков последней клети стана, вход которого соединен с выходом измерителя неплоскостности, установленного за последней клетью, системы гидроизгиба и охлаждения прокатных валков, соединенных с блоком технологической автоматики j-й (j= 1, . . . , n-1) клети стана, блок расчета регулирования уставок гидроизгиба и смазочно-охлаждающей жидкости для j-й клети, блок расчета разностей между величинами станочных профилировок, усилий и скоростей прокатки j-й и последней n-й клетей стана, первый и второй входы которого соединены с выходами измерителей усилия и скорости прокатки в j-й клети, третий и четвертый входы соединены с выходами измерителей усилия и скорости прокатки в n-й клети, первый вход блока расчета регулировочных уставок гидроизгиба и подачи смазочно-охлаждающей жидкости для j-й клети стана соединен с выходом блока расчета разностей между величинами станочных профилировок, усилий и скоростей прокатки j-й и последней n-й клетей стана, второй и третий входы - с выходами блока формирования уставок гидроизгиба и охлаждения валков в последней клети, четвертый вход - с выходом измерителя плоскостности, а выход - с входами блока технологической автоматики и видеоустройства системы слежения за процессом прокатки, отличающееся тем, что оно снабжено измерителем толщины подката по ширине, установленным перед первой клетью прокатного стана, выход которого соединен с входом арифметического блока определения локальных утолщений на подкате и запоминания их местоположения, выход которого соединен с входом блока технологической автоматики, предназначенным для подачи сигналов системе охлаждения прокатных валков для максимальной подачи охлаждающей жидкости и системе дифференцированной подачи смазки по длине бочки валков для минимальной подачи смазывающего вещества на участки валков, соответствующие участкам полосы с локальными утолщениями.Описание изобретения к патенту
Изобретение относится к прокатному производству и может быть использовано в автоматизированных системах управления качеством прокатываемых полос на непрерывных тонколистовых станах. Известны устройства для регулирования плоскостности полос, содержащие секционный измеритель распределения натяжений по ширине полосы, блоки расчета регулировочных уставок гидроизгиба и позонного охлаждения, а также системы, осуществляющие это регулирование ([1], Devidson R. "Automatic flatness control". Iron and Steel Engineer, 1986, 10, pp.44-48. [2], Caristedt A.G., Keijser O. "Modern approach to flatness measurement and control in cold rolling", Iron and Steel Engineer, 1991, 4, pp.34-37). Назначение этих устройств - регулирование плоскостности полос на выходе последней клети непрерывного тонколистового стана, т.е. получение холоднокатаных полос с заданным распределением удельных натяжений по ширине полосы. Однако решение задачи получения плоской полосы также зависит от стабильности протекания процесса прокатки в первых клетях непрерывного стана, которая определяется распределением удельных натяжений по ширине полосы, т.е. зависит от эффективности управления средствами регулирования плоскостности (СРП) первых клетей. Наиболее близким к предлагаемому устройству по технической сущности является устройство для автоматического регулирования плоскостности полос в первых клетях стана, которое содержит измеритель неплоскостности, измерители усилий и скоростей прокатки, системы гидроизгиба и охлаждения прокатных валков, блок расчета разностей между величинами станочных профилировок, усилий и скоростей прокатки в j-й (j=1,...n-1) и последней (n-й) клетях стана, а также блоки расчета регулировочных уставок гидроизгиба и подачи охлаждающей жидкости для j-й клети и последней (n-й) клети стана ([3], Авторское свидетельство СССР 1705072, класс В21В37/00, 1992). Известное устройство, принятое в качестве прототипа, позволяет эффективно управлять СРП в первых клетях стана с целью создания оптимального распределения удельных натяжений по ширине полосы с точки зрения устойчивости процесса прокатки и обеспечивает получение полос на выходе последней клети стана с заданной эпюрой удельных натяжений по ее ширине. Данное устройство работает по принципу программного управления и замкнутого управления по отклонению. Последнее обуславливает транспортное запаздывание в управлении СРП клетей стана, что приводит к повышению доли отбраковки металла по неплоскостности. В частности, если на подкате присутствует локальное утолщение, то уже в первых клетях стана на полосе образуется локальная неплоскостность. Принимая во внимание тот факт, что скорость прокатки на современных непрерывных станах достаточно высока (~20-30 м/с) и для перенастройки дифференцированной подачи охлаждающей жидкости на валки (наиболее эффективный канал СРП для устранения локальной неплоскостности) в клетях требуется определенное время, то некоторая часть полосы из первых клетей с локальной неплоскостностью проходит последнюю клеть без регулирования ([4], Божков А.И., Настич В.П. Плоскостность тонколистового проката. - М. : ИНТЕРМЕТ ИНЖИНИРИНГ, 1998. - 264с.). Это является недостатком рассматриваемого устройства. Сократить количество прокатанной полосы с локальной неплоскостностью можно путем определения локальных утолщений на подкате на входе в стан и создания условий минимального обжатия утолщенных участков в каждой клети. Первое достигается установкой измерителя толщины по ширине подката на входе в первую клеть, второе - увеличением подачи охлаждающей жидкости на участок валка, соответствующий локальному утолщению на полосе, и уменьшением подачи смазки на этот же участок валка. Сущность предлагаемого устройства заключается в том, что оно содержит блок технологической автоматики, измерители усилий и скоростей прокатки, измеритель неплоскостности, блок формирования уставок гидроизгиба и охлаждения валков последней клети стана, блок расчета разностей между величинами станочных профилировок, усилий и скоростей прокатки в j-й (j=1,...n-1) и последней (n-й) клетях стана, блок расчета регулировочных уставок гидроизгиба и подачи охлаждающей жидкости для j-й клети, системы гидроизгиба и охлаждения прокатных валков, соединенные с блоком технологической автоматики j-ой (j=1,...n-1) клети стана, видеоустройство системы слежения за процессом прокатки. При этом оно снабжено измерителем толщины подката по ширине, установленным перед первой клетью прокатного стана, выход которого соединен с входом арифметического блока определения локальных утолщений на подкате и запоминания их местоположения. Выход этого блока соединен с входом блока технологической автоматики, предназначенным для подачи сигналов системе охлаждения прокатных валков для максимальной подачи охлаждающей жидкости и системе дифференцированной подачи смазки по длине бочки валков для минимальной подачи смазывающего вещества на участки валков, соответствующие участкам полосы с локальными утолщениями. Система дифференцированной подачи смазки по длине бочки валков имеется в первых клетях стана. Сопоставительный анализ с прототипом показывает, что заявляемое устройство отличается наличием новых приспособлений и блоков: измеритель толщины подката по ширине, арифметический блок и система для дифференцированной подачи смазки по длине бочки валков. На фиг.1 представлена схема связей предлагаемого устройства с остальными элементами систем прокатного стана. Устройство автоматического регулирования плоскостности полос содержит измерители усилий 1 и скоростей 2 прокатки, выходы которых соединены с входами 3.1, 3.2, 3.3, 3.4 первого арифметического блока 3, выход которого соединен с входом 4.1 второго арифметического блока 4, входы 4.2, 4.3 которого соединены с выходами блока 5 формирования уставок гидроизгиба и охлаждения валков в последней клети. Выход измерителя неплоскостности 6 соединен с входом блока 5 и входом 4.4 второго арифметического блока 4. Выход измерителя толщины подката по ширине 7, установленный перед первой клетью стана холодной прокатки, соединен с входом третьего арифметического блока 8. Выходы арифметических блоков 4 и 8 соединены с входом блока 9 технологической автоматики, осуществляющей управление гидроизгиба 10, системой охлаждения 11 и системой дифференцированной подачи смазки 12 по длине валков j-ой клети стана, и видеоустройством 13. Входы 3.5, 3.6, 3.7, 3.8, 3.9 первого арифметического блока 3, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13 второго арифметического блока 4 и 8.1 третьего арифметического блока 8 соединены с интерфейсом вычислительного средства технологической автоматики. На фиг.2 приведена блок-схема первого арифметического блока расчета разностей между величинами станочных профилировок, усилий и скоростей прокатки j-й и n-й клетей стана. Измерители усилий (Рj, Рn) и скоростей (Vj, Vn) прокатки для j-й и n-й клетей соответственно представлены в виде датчиков 3.1-3.4. Выходы датчиков 3.3-3.4 соединены с входами инверторов 15 и 16, выходы которых соединены с первыми входами сумматоров 23 и 24, вторые входы которых соединены с выходами датчиков 3.1-3.2. Вход инвертора 14 соединен с каналом интерфейса, который выдает сигналы о значениях станочных профилировок рабочих валков n-й клети (Dn). Выход инвертора 14 соединен с первым входом сумматора 22, второй вход которого связан с каналом интерфейса, который выдает сигналы о значениях станочных профилировок рабочих валков j-й клети (Dj). Выходы сумматоров 22, 23 и 24 соединены с первыми входами умножителей 17, 18, 19, вторые входы которых связаны с каналами интерфейса, которые выдают сигналы о значениях коэффициентов передачи от воздействий станочной профилировки (KDj), усилия (KPj) и скорости (KVj) прокатки j-й клети на неравномерность натяжения и форму полосы. Выходы умножителей 18 и 19 соединены с входами инверторов 20 и 21, выходы которых соединены с первыми входами сумматоров 25 и 26, где второй вход сумматора 25 соединен с выходом умножителя 17, а второй вход сумматора 26 соединен с выходом сумматора 25. Выходным каналом первого арифметического блока является выход сумматора 26. На фиг. 3 представлена блок-схема второго арифметического блока расчета регулировочных уставок гидроизгиба и подачи СОЖ для j-ой клети стана. Выход первого арифметического блока соединен с входом инвертора 33, выход которого соединен с первым входом сумматора 39, второй вход которого соединен с входом датчика 4.4 измерителя неплоскостности 6, установленного на выходе последней клети стана, который выдает сигналы о неравномерности натяжений по ширине полосы (















где


K1=1-K2, (2)
а коэффициенты передачи KDj, Kpj, Kvj, KFj, KQj, KDn, KFn, KQn и коэффициент изменения жесткости полосы

KDj=120hj+0,000182 B,
Kpj=0,09-0,00545hj-0,0000273 В, (3)
j=1,...,n,
Kvj=0,05-0,00364hj-0,0000182 В,
где hj, В - толщина и ширина полосы на выходе j-й клети, мм. Перемноженные сигналы Kpj, и с выхода сумматора в умножителе Kvj и с выхода сумматора в умножителе инвертируются в инверторах. В сумматоре складываются сигналы с выхода умножителя и выхода инвертора и результирующий сигнал поступает на вход сумматора, где он суммируется с сигналом с инвертора и результирующий сигнал с выхода сумматора поступает на вход инвертора второго арифметического блока. Текущие значения неравномерности натяжения полосы, измеренные датчиком на выходе из стана на различных участках ширины полосы, либо через фиксированные интервалы времени, либо через фиксированное число оборотов измерительного ролика (например, при использовании стрессометрического ролика), поступают на вход сумматора, где суммируются с выходным сигналом инвертора. Результирующий сигнал с сумматора подается на вход делителя, где делится на задаваемый сигнал, соответствующий коэффициенту передачи KFj, на неравномерность натяжения в управляемой клети от действия подачи СОЖ, и на делитель, где на него делится результирующий сигнал с выхода сумматора, на входы которого подается сигнал о заданном значении неравномерности натяжения по ширине полосы




KQj=0,073hj+0,000114 В,
KFj=0,236hj+0,000182 В, (4)
j=1,...,n. Сигналы о заданных значениях коэффициентов передачи на неравномерность натяжения в n-й клети от усилия гидроизгиба Fn, и от действия подачи СОЖ KQn, подаются на входы делителя, с выхода которого сигнал KQn/KFn попадает на первый вход умножителя, на второй вход которого с блока уставок гидроизгиба и охлаждения валков для последней клети стана подается сигнал об изменении уставки на расход СОЖ




где k=1,2...,М - количество участков полосы, для которых вычисляется порог сравнения: М=N/3; m=1,4,7,10,...,N-2. Инвертируемые значения толщины из инверторов 45 поступают в сумматоры 46, где вычисляется разность между фактическими значениями толщины Нi и порогом сравнения


В блоке 47 происходит сравнение








1. Devidson R. "Automatic flatness control". Iron and Steel Engineer, 1986, 10, pp.44-48. 2. Caristedt A.G., Keijser O. "Modern approach to flatness measurement and control in cold rolling". Iron and Steel Hngineer, 1991, 4, pp.34-37. 3. Авторское свидетельство СССР 1705072, кл. В 21 В 37/00, 1992. 4. Божков А.И., Настич В.П. Плоскостность тонколистового проката. - М.: ИНТЕРМЕТ ИНЖИНИРИНГ, 1998. - 264 с.
Класс B21B37/28 управление плоскостностью или профилем при прокатке полос или листов