способ разложения силикатных минералов

Классы МПК:C22B7/04 переработка шлака 
Автор(ы):, , , ,
Патентообладатель(и):Томский политехнический университет
Приоритеты:
подача заявки:
2001-02-21
публикация патента:

Изобретение относится к области химической и гидрометаллургической технологии и может быть использовано для разложения силикатных руд и утилизации шлаков металлургической промышленности, а также для создания комплекса малоотходной технологии получения меди и цинка при переработке отвальных шлаков медеплавильных производств. Предварительно измельченный минерал смешивают с серной кислотой, в смесь добавляют фторсодержащий активирующий компонент - фторид кальция, полученную смесь нагревают до температуры 80-320oС и выдерживают некоторое время. Фтористый кальций можно заменить природным минералом - плавиковым шпатом (флюоритом), содержащим ~20% фтористого кальция, обеспечиваются низкая себестоимость процесса разложения, низкие энергозатраты, простота аппаратурного оформления.

Формула изобретения

Способ переработки силикатного сырья, включающий его обработку соединением, содержащим фтор-ион, отличающийся тем, что в качестве исходного сырья используют силикатный минерал или шлак, в качестве соединения, содержащего фтор-ион, используют фторид кальция, который добавляют к минералу или шлаку в количестве 5-50% от массы исходного сырья, затем приливают серную кислоту в количестве 70-120% от массы исходного сырья и после смешивания исходную смесь нагревают до температуры 80-320oС.

Описание изобретения к патенту

Изобретение относится к области химической и гидрометаллургической технологии и может быть использовано для разложения силикатных руд и утилизации шлаков металлургической промышленности, а также для создания комплекса малоотходной технологии получения меди и цинка при переработке отвальных шлаков медеплавильных производств.

Известен способ разложения силикатных минералов сплавлением с гидроксидом натрия. В предварительно расплавленный гидроксид натрия при 332oС засыпают силикатный минерал, затем поднимают температуру до 650oС. В течение часа происходит практически полное разложение минерала [У.Б. Блюменталь. Химия циркония, ИЛ, 1963].

Недостатком этого способа является дороговизна основного реагента - гидроксида натрия, высокая температура процесса и большие энергетические затраты. Предъявляются повышенные требования к безопасности производства, поскольку использование гидроксида натрия при высокой температуре приводит к образованию высокотоксичных аэрозолей гидроксида натрия.

Известен способ разложения силикатных минералов спеканием с карбонатом натрия. Предварительно измельченный силикат смешивают с карбонатом натрия. Температура, необходимая для завершения реакции, - 1100oС, достигается в конце процесса без оплавления смеси [Б. Ластман, Ф. Керз. Металлургия циркония. ИЛ, 1959].

Недостатками этого метода является высокая температура процесса и большие энергозатраты, а также сложность аппаратурного оформления. Также стоимость карбоната натрия приводит к удорожанию процесса.

Известен способ разложения силикатных шлаков медеплавильных заводов сплавлением с коксом и негашеной известью. Шлаки разогревали до расплавления и на поверхность засыпали 3% кокса, затем небольшими порциями досыпали негашеную известь и пирит. После полного расплавления и гомогенизации системы печь отключали, шлак отстаивали и сливали. [И.Ф. Худяков, И.Э. Кляйн, Н.Г. Агеев, Металлургия меди, никеля, сопутствующих элементов. М."Металлургия", 1993].

Недостатками приведенного способа разложения является большой расход негашеной извести и высокие температуры процесса, достигающие 1200oС.

Известен способ разложения силикатного минерала циркона, выбраный в качестве прототипа. Суть метода заключается в внесении фториона при спекании циркона с K2SiF6, при температуре 700oС. Взаимодействие идет по реакции

ZrSiO4+K2SiF6=K2ZrE6+2SiO2

В результате получается хорошо растворимое соединение - фтороцирконат калия, и оксид кремния [Сажин Н.П., Пепеляева Е.А. Доклад на 1 Женевской конференции по мирному использованию атомной энергии. Сб. "Исследования в области геологии, химии и металлургии". АН СССР, 1955, стр.142].

Недостатком способа-прототипа является применение в больших количествах дорогостоящего реактива фторосиликата калия, высокие температуры и соответственно повышеные энергозатраты, приводящие к большой себестоимости продукта.

Задачей предлагаемого изобретения является разработка дешевого энергосберегающего способа разложения силикатных минералов и шлаков.

Поставленная задача достигается тем, что смешивают предварительно измельченный минерал с серной кислотой, в смесь добавляют фторсодержащий активирующий компонент - фторид кальция, полученную смесь нагревают до температуры 80o-320oС и выдерживаю некоторое время.

Согласно способу в предварительно измолотый минерал или шлак вносится фтористый кальций в количестве от 5 мас.% до 50 мас.%, серная кислота вносится в количестве от 70 мас.% до 120 мас.% от исходного количества минерала. При внесении в смесь меньшего количества фтористого кальция реакция не наблюдается, превышение 50 мас.%содержания экономически не выгодно. Количество серной кислоты для каждого вида минералов и шлаков определяется индивидуально. С учетом молекулярного состава необходимо использовать эквимолярное количество минерала и серной кислоты.

После полного смешивания реакционную смесь нагревают в интервале температур от 80oС до 320oС, при меньших температурах скорость реакции слишком мала. Верхний предел температуры определяется температурой кипения серной кислоты. При нагревании происходит химическое разложение силикатного минерала на кремневую кислоту и растворимые соли металлов, присутствующих в минеральном сырье. Время реагирования зависит от крупности помола и температуры.

Пример 1

Безводный метод.

Минеральное силикатное сырье (циркон ZrSiO4)100 г предварительно измельчают до среднего размера зерна 0,1 мм и смешивают с 10 г фтористого кальция в шаровой мельнице. Приготовленную сухую смесь подают в барабанную вращающуюся печь, туда же подают 70 мл 100% серной кислоты. Температура в печи не превышает 320oС. Через 20-60 минут реакционную смесь выгружают из печи и направляют на стадию водного выщелачивания. В жидкой фазе осталась растворимая соль ценного компонента ZrOSO4. В твердой фазе остаток непрореагировавшего минерального сырья, фтористого кальция, сульфата кальция и кремневой кислоты.

Пример 2

Водный метод.

Минеральное силикатное сырье (ZrSiO4) в количестве 100 г предварительно измельчают мокрым способом в шаровой мельнице до среднего размера частиц 0,1 мм, смешивают с 10 г фтористого кальция. В образовавшуюся водную пульпу при Т:Ж=1:1 доливают 100 мл 100%серной кислоты. Смесь при перемешивании нагревают до 90oС. В течение трех часов происходит растворение силикатов, после чего сливают раствор, содержащий ZrOSO4.

Пример 3

Утилизация силикатного шлака медеплавильного производства, содержащего силикат железа(~50%), силикат меди(~2%), силикат цинка(~8%), силикат алюминия (~15%), силикат магния(~5%), оксида кремния (~10%), другие компоненты.

Навеска шлака 100 г смешивается с 10 г фтористого кальция и измельчается в шаровой мельнице до размера частиц 0,1 мм. Приготовленную сухую смесь подают в барабанную вращающуюся печь, туда же подают 70 мл 100% серной кислоты. Температура в печи не превышает 320oС. Через 20-60 минут реакционную смесь выгружают из печи и направляют на стадию водного выщелачивания. В водную фазу переходят сульфаты ценных компонентов - железа, меди, цинка, магния, алюминия.

В примерах конкретного выполнения фтористый кальций можно заменить природным плавиковым шпатом (флюоритом), который обладает низкой себестоимостью и добывается в промышленных масштабах. Использование предложенного метода не только значительно понижает себестоимость передела шлака, но и решает важную экологическую задачу по утилизации отходов. В настоящее время количество отвальных шлаков медеплавильного производства, не подлежащих переработке существующими методами, достигает несколько сотен миллионов тонн.

Класс C22B7/04 переработка шлака 

способ переработки титановых шлаков -  патент 2522876 (20.07.2014)
способ переработки алюминиевого шлака -  патент 2518805 (10.06.2014)
способ получения неорганического материала на основе оксинитридов титана -  патент 2518363 (10.06.2014)
способ извлечения металлов из силикатных шлаков -  патент 2515735 (20.05.2014)
способ получения пентаоксида ванадия из ванадийсодержащего шлака. -  патент 2515154 (10.05.2014)
способ переработки отвальных конверторных шлаков предприятий по производству никеля с получением никелевого полуфабриката, пригодного для производства сталей 20хн2м и 20н2м -  патент 2514750 (10.05.2014)
способ переработки высокоглиноземистых шлаков алюмотермического производства ферросплавов -  патент 2511556 (10.04.2014)
способ извлечения никеля и кобальта из отвальных конверторных шлаков комбинатов, производящих никель -  патент 2499064 (20.11.2013)
устройство для сжатия горячего шлака цветного металла -  патент 2494157 (27.09.2013)
способ переработки солевых алюмосодержащих шлаков с получением покровных флюсов и алюминиевых сплавов-раскислителей -  патент 2491359 (27.08.2013)
Наверх