свч способ определения концентрации ферромагнитных частиц

Классы МПК:G01N15/06 определение концентрации частиц в суспензиях
H01P1/32 устройства невзаимной передачи
Автор(ы):, , , ,
Патентообладатель(и):Тамбовский военный авиационный инженерный институт
Приоритеты:
подача заявки:
1999-11-09
публикация патента:

Изобретение относится к способам измерения концентрации дисперсных систем и может быть использовано для контроля и регулирования концентрации ферромагнитных частиц в жидкости в процессе производства изделий из ферромагнитных материалов в химической и других областях промышленности. Техническим результатом - изобретения является повышение точности измерения концентрации ферромагнитных частиц в жидкости. В одном из плеч волноводного тройника, расположенного в Н-плоскости с тройственной симметрией, возбуждают волну Н10. По центру тройника нормально его плоскости по диэлектрическому сосуду пропускают ферромагнитную жидкость. Вдоль оси сосуда прикладывают квазипостоянное, нормальное к направлению распространения волны, управляемое по величине магнитное поле НО, величину которого изменяют так, что угол поворота дифракционной картины свч способ определения концентрации ферромагнитных частиц, патент № 2182327д, зависящий от концентрации ферромагнитных частиц в жидкости, остается постоянным и обеспечивает максимум выходной мощности одного из выходного плеч. Далее производят реверс направления при равенстве величин поля подмагничивания. Находят максимум выходной мощности другого выходного плеча. Значения полей подмагничивания разных направлений усредняются и по среднему их значению судят о концентрации ферромагнитных частиц в жидкости. 2 ил.
Рисунок 1, Рисунок 2

Формула изобретения

СВЧ - способ измерения концентрации ферромагнитных частиц в жидкости, включающий помещение диэлектрического сосуда с жидкостью в высокочастотное электромагнитное и постоянное магнитное поля и последующую регистрацию измерения параметров, характеризующих высокочастотное излучение, отличающийся тем, что диэлектрический сосуд с ферромагнитной жидкостью помещают по центру соединенного в Н-плоскости волноводного симметричного Y-тройника нормально его плоскости, вдоль оси диэлектрического сосуда прикладывают постоянное, нормальное направлению распространения волны, управляемое по величине и направлению магнитное поле Но, которое стабилизируют по моменту максимума выходной мощности первого выходного плеча Y-тройника; производят реверс направления вектора Но; изменением направления вектора Но при равенстве его величины находят максимум выходной мощности второго выходного плеча и по среднему значению величины Но разных направлений судят о концентрации ферромагнитных частиц в жидкости.

Описание изобретения к патенту

Изобретение относится к способам измерения концентрации дисперсных систем и может быть использовано для контроля и регулирования концентрации ферромагнитных частиц в жидкости в процессе производства изделий из ферромагнитных материалов, например ферритов и магнитодиэлектриков, в химической и других областях промышленности.

Известен способ определения концентрации ферромагнитных частиц в жидкости, принятый за прототип, включающий помещение сосуда с жидкостью в высокочастотное электромагнитное и постоянное магнитное поля и последующую регистрацию изменения параметров, характеризующих высокочастотное излучение бегущей волны. Причем падающее высокочастотное излучение линейно поляризуют, направление вектора напряженности постоянного магнитного поля совмещают с направлением распространения излучения в жидкости, измеряют длину пути излучения в жидкости, угол поворота плоскости поляризации прошедшего излучения и по измеренным величинам судят о концентрации ферромагнитных частиц (см. Абраров А.Т., Дмитриев Д.А., Соколов Ю.Ф. Способ измерения концентрации ферромагнитных частиц. А.с. 924557, кл. G 01 N 15/00, БИ 16, 30.04.82).

Недостатком известного способа является малая точность и технологические трудности измерения угла поворота плоскости поляризации в функции измеряемой объемной концентрации.

Техническим результатом предлагаемого изобретения является повышение точности измерения концентрации ферромагнитных частиц в жидкости.

Сущность изобретения заключается в том, что в одном из плеч волноводного тройника (плечо 1), расположенного в Н-плоскости (см. фиг.1), с тройственной симметрией возбуждают волну Н10. По центру тройника нормально его плоскости по диэлектрическому сосуду пропускают ферромагнитную жидкость, вдоль оси сосуда прикладывают квазипостоянное, нормальное к направлению распространения волны, управляемое по величине магнитное поле Но, величину которого изменяют так, что угол поворота дифракционной картины свч способ определения концентрации ферромагнитных частиц, патент № 2182327д, зависящий от концентрации ферромагнитных частиц в жидкости, остается постоянным и обеспечивает максимум выходной мощности одного из плеч, например 2, а о концентрации судят по величине Но (Iо) индицируемой по максимуму выходной мощности; далее производят реверс величины Но путем изменения направления вектора Но при равенстве его величины. Изменяя величину Но, находят максимум выходной мощности другого плеча, например 3. Значения Но разных направлений усредняются и по среднему значению Но (Iо) определяют концентрацию ферромагнитных частиц в жидкости.

Сущность способа измерения концентрации ферромагнитных частиц поясняется следующим. Из теории электродинамического подобия известно, что 1 < n = f1/f2 = свч способ определения концентрации ферромагнитных частиц, патент № 21823272/свч способ определения концентрации ферромагнитных частиц, патент № 21823271 = a2/a1, где а - линейный размер системы. Таким образом, уменьшение габаритов измерительных волноводов можно достичь, уменьшая величину свч способ определения концентрации ферромагнитных частиц, патент № 2182327г, пропорционально величине характерного размера прямоугольного волновода или радиуса круглого. При этом практически пропорционально уменьшению а растет характерное значение поля подмагничивания, сопровождаемое соответствующим увеличением размеров магнитной системы согласно гиромагнитному соотношению свч способ определения концентрации ферромагнитных частиц, патент № 2182327 = kгHo, или свч способ определения концентрации ферромагнитных частиц, патент № 2182327 = 2свч способ определения концентрации ферромагнитных частиц, патент № 2182327/kгHo. Таким образом, интегральная минимизация массогабаритных величин концентратомеров ФМЖ является непростой задачей, осложняемой необходимостью размещения в волноводе устройств ввода-вывода ферромагнитной жидкости и выбора оптимального размера зоны взаимодействия жидкости с полем бегущей волны. В любом случае желательны небольшие поля Hо, минимально возможная свч способ определения концентрации ферромагнитных частиц, патент № 2182327г и соответственно сечение волновода с простейшим устройством ввода-вывода проточной ферромагнитной жидкости, предпочтительно через круглый гладкий трубопровод.

Схема измерения концентрации ферромагнитнитных частиц в жидкости на волноводном Y-циркуляторе показана на фиг.1 (рабочая длина волны свч способ определения концентрации ферромагнитных частиц, патент № 2182327г = 1см (асвч способ определения концентрации ферромагнитных частиц, патент № 2182327в= 0,2 см2)) и представляет собой соединенный в Н-плоскости волноводный симметричный Y-тройник с тремя плечами 1, 2, 3 с полем подмагничивания (поперечного) Hо.

Поле создается двумя согласно подключенными обмотками соленоидов 5 через Кл. 1 и Кл.2, подключенными к управляемому источнику тока УИТ. Вдоль вертикальной оси симметрии расположен диэлектрический сосуд с ферромагнитной жидкостью (внутренний диаметр равен 0,003м). Диэлектрический сосуд также способствует расширению полосы рабочих частот - выполняет роль диэлектрического трансформатора. (Вамберский М. В. , Казанцев В.И., Шелухин С.А. Передающие устройства СВЧ. Под ред. М.В. Вамберского. - М.: Высшая школа,1984). Излучение через круглые щели ввода и вывода ферромагнитной жидкости при этом практически отсутствует. Наиболее наглядно принцип способа измерения можно объяснить явлением углового поворота картины дифракции плоской электромагнитной волны на круглом цилиндре ферромагнитной жидкости. При этом распределение электрического поля на внешней поверхности цилиндра, обусловленное суммой падающей и рассеянной волн, зависит от его геометрических размеров и электрических параметров (свч способ определения концентрации ферромагнитных частиц, патент № 2182327 = f(Ho)) (Вамберский М.В., Казанцев В. И., Шедукин С. А. Передающие устройства СВЧ. Под ред. М.В. Вамберского. - М.: Высшая школа, 1984). При определенных значениях этих параметров в случае ненамагниченной ферромагнитной жидкости (диэлектрика) дифракционная картина поля имеет вид, показанный на фиг.2а.

Это распределение можно рассматривать как суперпозицию двух азимутальных пространственных гармоник с равными амплитудами, распространяющимися по поверхности цилиндра в противоположных направлениях. Когда к цилиндру с ферромагнитной жидкостью приложено внешнее поле Но>0, фазовые отношения между этими гармониками меняются и узлы дифракционной картины поля поворачиваются на определенный угол (на фиг.2б этот оптимальный угол равен 60o). Т. к. этот угол свч способ определения концентрации ферромагнитных частиц, патент № 2182327д (угол поворота дифракционной картины) зависит от величины концентрации ферромаггнитных частиц Сv и поля подмагничивания Hо: свч способ определения концентрации ферромагнитных частиц, патент № 2182327д = f[свч способ определения концентрации ферромагнитных частиц, патент № 2182327(Cv,Ho)] = свч способ определения концентрации ферромагнитных частиц, патент № 2182327/3, то его стабилизация позволяет по току подмагничивания lо судить о величине Сv.

При величинах Сv и Но, обеспечивающих постоянство: свч способ определения концентрации ферромагнитных частиц, патент № 2182327д = свч способ определения концентрации ферромагнитных частиц, патент № 2182327/3, один из узлов располагается по центру изолированного плеча 3 (фиг.2б). При этом распределение электрического поля, возбуждающего это плечо, соответствует не распространяющейся в нем волне Н20. В центрах входного 1 и выходного плеч 2 амплитуды электрического поля практически равны (без учета поглощения энергии ферромагнитной жидкости) и между ними происходит передача энергии с малыми потерями.

Технико-экономический эффект от применения предлагаемого способа заключается в повышении качества и улучшении технологичности производства жидкости с ферромагнитными частицами, минимизации габаритов и массы измерителя, упрощении устройств ввода и вывода ферромагнитной жидкости в зону взаимодействия с полем бегущей волны.

Класс G01N15/06 определение концентрации частиц в суспензиях

способ измерения продольного и сдвигового импендансов жидкостей -  патент 2529634 (27.09.2014)
способ и устройство для обнаружения загрязнений в текучей среде -  патент 2524057 (27.07.2014)
ультразвуковой способ контроля концентрации магнитных суспензий -  патент 2520166 (20.06.2014)
способ и устройство для быстрого анализа образцов текучего вещества с использованием фильтра -  патент 2516580 (20.05.2014)
способ приготовления наносуспензии для изготовления полимерного нанокомпозита -  патент 2500695 (10.12.2013)
способ контроля сухого остатка моющих растворов при машинной промывке шерсти -  патент 2498270 (10.11.2013)
устройство датчика для целевых частиц в пробе -  патент 2476858 (27.02.2013)
способ диагностики агрегатов машин по параметрам работающего масла -  патент 2473884 (27.01.2013)
способ оценки концентрации смолоподобных веществ в суспензии -  патент 2472135 (10.01.2013)
способ и устройство для анализа магнитного материала и анализатор, содержащий это устройство -  патент 2471170 (27.12.2012)

Класс H01P1/32 устройства невзаимной передачи

Наверх