способ измерения концентрации оптически активных веществ в растворах

Классы МПК:G01J4/04 поляриметры с использованием электрических детекторов
Автор(ы):,
Патентообладатель(и):Мухамедяров Роберт Давлетович,
Харисов Рауил Ибрагимович
Приоритеты:
подача заявки:
2000-05-15
публикация патента:

Способ включает пропускание модулированного плоскополяризованного излучения через исследуемый раствор, сбор пропущенного излучения на три поляроида-анализатора с фотоприемниками, при этом первый и второй поляроиды-анализаторы развернуты симметрично относительно плоскости плоскополяризованного излучения, поступающего в раствор, а третий поляроид-анализатор ориентирован в той же плоскости плоскополяризованного излучения, поступающего в раствор, сигналы с трех фотоприемников усиливаются в этих трех каналах, синхронно детектируются, переводятся в цифровую форму и обрабатываются. Измерение угла поворота плоскости поляризации производится по соотношениям, которые исключают влияние неидентичности каналов и неточной выставки поляроидов на конечный результат. 3 с.п. ф-лы, 1 ил.
Рисунок 1

Формула изобретения

1. Способ измерения концентрации оптически активных веществ в растворах по углу поворота плоскости поляризации, включающий пропускание модулированного плоскополяризованного излучения через исследуемый раствор, сбор пропущенного излучения на три поляроида-анализатора с фотоприемниками, при этом первый и второй поляроиды-анализаторы развернуты симметрично относительно плоскости плоскополяризованного излучения, поступающего в раствор, а третий поляроид-анализатор ориентирован так же, как поляроид источника плоскополяризованного излучения, усиление сигналов с трех фотоприемников, синхронное детектирование, перевод в цифровую форму и обработку, получение значений сигналов R1, R2, R3 - на выходе первого, второго и третьего синхронных детекторов соответственно, когда установлена кювета с исследуемым раствором и на приемной части установлены поляроиды-анализаторы, отличающийся тем, что дополнительно получают значения сигналов W1, W2, W3 - на выходе первого, второго и третьего синхронных детекторов соответственно, когда отсутствует кювета с исследуемым раствором и на приемной части установлены поляроиды-анализаторы; значения сигналов Р1, Р2, Р3 - на выходе первого, второго и третьего синхронных детекторов соответственно, когда установлена кювета с исследуемым раствором и на приемной части нет поляроидов-анализаторов; значения сигналов V1, V2, V3 - на выходе первого, второго и третьего синхронных детекторов соответственно, когда отсутствует кювета с исследуемым раствором и на приемной части нет поляроидов-анализаторов, а измерение угла поворота плоскости поляризации способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733 производится по следующему соотношению:

способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733

где способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733

2. Способ измерения концентрации оптически активных веществ в растворах по углу поворота плоскости поляризации, включающий пропускание модулированного плоскополяризованного излучения через исследуемый раствор, сбор пропущенного излучения на три поляроида-анализатора с фотоприемниками, при этом первый и второй поляроиды-анализаторы развернуты симметрично относительно плоскости плоскополяризованного излучения, поступающего в раствор, а третий поляроид-анализатор ориентирован так же, как поляроид источника плоскополяризованного излучения, усиление сигналов с трех фотоприемников, синхронное детектирование, перевод в цифровую форму и обработку, получение значений сигналов R1, R2, R3 - на выходе первого, второго и третьего синхронных детекторов соответственно, когда установлена кювета с исследуемым раствором и на приемной части установлены поляроиды-анализаторы, отличающийся тем, что дополнительно получают значения сигналов W1, W2, W3 - на выходе первого, второго и третьего синхронных детекторов соответственно, когда отсутствует кювета с исследуемым раствором и на приемной части установлены поляроиды-анализаторы; значения сигналов Р1, Р2, Р3 - на выходе первого, второго и третьего синхронных детекторов соответственно, когда установлена кювета с исследуемым раствором и на приемной части нет поляроидов-анализаторов; значения сигналов V1, V2, V3 - на выходе первого, второго и третьего синхронных детекторов соответственно, когда отсутствует кювета с исследуемым раствором и на приемной части нет поляроидов-анализаторов, а измерение угла поворота плоскости поляризации способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733 производится по следующему соотношению:

способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733

где способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733

3. Способ измерения концентрации оптически активных веществ в растворах по углу поворота плоскости поляризации, включающий пропускание модулированного плоскополяризованного излучения через исследуемый раствор, сбор пропущенного излучения на три поляроида-анализатора с фотоприемниками, при этом первый и второй поляроиды-анализаторы развернуты симметрично относительно плоскости плоскополяризованного излучения, поступающего в раствор, а третий поляроид-анализатор ориентирован так же, как поляроид источника плоскополяризованного излучения, усиление сигналов с трех фотоприемников, синхронное детектирование, перевод в цифровую форму и обработку, получение значений сигналов R1, R2, R3 - на выходе первого, второго и третьего синхронных детекторов соответственно, когда установлена кювета с исследуемым раствором и на приемной части установлены поляроиды-анализаторы, отличающийся тем, что дополнительно получают значения сигналов W1, W2, W3 - на выходе первого, второго и третьего синхронных детекторов соответственно, когда отсутствует кювета с исследуемым раствором и на приемной части установлены поляроиды-анализаторы; значения сигналов Р1, Р2, Р3 - на выходе первого, второго и третьего синхронных детекторов соответственно, когда установлена кювета с исследуемым раствором и на приемной части нет поляроидов-анализаторов; значения сигналов V1, V2, V3 - на выходе первого, второго и третьего синхронных детекторов соответственно, когда отсутствует кювета с исследуемым раствором и на приемной части нет поляроидов-анализаторов, а измерение угла поворота плоскости поляризации способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733 производится по следующему соотношению:

способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733

где способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733

способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733

а параметры k1, k2 однозначно определяются по углам разворота поляроидов-анализаторов.

Описание изобретения к патенту

Изобретение относится к фотоэлектрическим поляриметрам и может быть использовано для измерения концентраций оптически активных веществ в медицине, химии, биологии, пищевой промышленности.

Для растворов, содержащих оптически активные вещества, имеет место зависимость между углом вращения способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733 плоскости поляризации раствора и концентрацией С оптически активного вещества: способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733 = способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733lспособ измерения концентрации оптически активных веществ в   растворах, патент № 2180733C, где l - толщина слоя раствора, способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733 - удельная вращательная способность вещества, зависящая от длины волны света, в котором проводится измерение. На основании этого закона для измерения концентрации раствора достаточно вычислить угол поворота плоскости поляризации.

Известен поляриметр для контроля, регистрации и регулирования технологических процессов (Литвак В.И. Фотоэлектрические датчики в системах контроля, управления и регулирования. - М.: Наука, 1966, с. 369-370), содержащий источник плоскополяризованного света, проточную поляриметрическую трубку, призму, два поляроида-анализатора, два фотосопротивления, включенных в мостовую схему. Прибор работает так. Свет от источника, пройдя через поляриметрическую трубку, попадает на призму и разделяется на два пучка, каждый из них направляется на соответствующий поляроид-анализатор с фотосопротивлением. Ток в диагонали моста является функцией световых потоков F1, F2, воспринимаемых фотосопротивлениями. В свою очередь эти потоки определяют величину оптической активности. Каждому значению отношения световых потоков соответствует определенное значение сопротивления, при котором мост балансируется. Сопротивление можно снабдить шкалой, градуированной непосредственно в единицах оптической активности. Отношение световых потоков однозначно определяет величину Q

Q=(F1-F2)/(F1+F2)=1-2/(1+F2/F1),

где F1= A1способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733cos2(способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733-x0),F2= A2способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733cos2(способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733+x0), A1, А2 - интенсивности сигналов, способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733 - угол, на который поворачивается плоскость поляризации после прохождения пучка света через оптически активную среду, x0 - угол выставки поляроидов-анализаторов относительно поляроида источника плоскополяризованного излучения.

Недостатком поляриметра является низкая точность измерений из-за неидентичности каналов, неточной выставки поляроидов-анализаторов и нелинейности шкалы.

Известен поляриметр (патент RU 2007694 С1, кл. G 01 J 4/04, 15.02.94), содержащий источник модулированного плоскополяризованного излучения, три поляроида-анализатора, при этом первый и второй поляроиды-анализаторы развернуты симметрично относительно поляроида - источника плоскополяризованного излучения, а третий поляроид-анализатор ориентирован так же, как поляроид источника плоскополяризованного излучения, три фотоприемника, три усилителя, три синхронных детектора, генератор опорного напряжения, блок вычитания, два блока сложения, два блока умножения на выбираемые константы, блок деления, при этом выход первого блока сложения через первый блок умножения на выбираемую константу подсоединен к первому входу второго блока сложения, к второму входу которого подсоединен выход второго блока умножения на выбираемую константу, вход которого соединен с выходом третьего синхронного детектора, второй вход которого подключен к одному из выходов генератора опорного напряжения, а выход блока вычитания и выход второго блока сложения подсоединены к соответствующим входам блока деления.

Дальнейшему повышению точности измерений препятствуют неидентичность каналов и неточность выставки поляроидов-анализаторов.

Задача изобретения состоит в измерении концентрации оптически активного вещества в растворе без погрешностей, вносимых неидентичностью каналов и неточной выставки поляроидов.

Решение поставленной задачи достигается тем, что в способе измерения концентрации оптически активных веществ в растворах по углу поворота плоскости поляризации, включающий пропускание модулированного плоскополяризованного излучения в кювету с исследуемым раствором, сбор пропущенного излучения на три поляроида-анализатора с фотоприемниками, при этом первый и второй поляроиды-анализаторы развернуты симметрично относительно плоскости плоскополяризованного излучения, поступающего в раствор, третий поляроид-анализатор ориентирован так же, как поляроид источника плоскополяризованного излучения, усиление сигналов с трех фотоприемников, синхронное детектирование, перевод в цифровую форму и обработку, а измерение угла поворота плоскости поляризации способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733 в первом варианте производится по следующему соотношению:

способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733

где способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733

W1, W2, W3 - значения сигналов на выходе первого, второго и третьего синхронных детекторов соответственно, когда отсутствует кювета с исследуемым раствором и на приемной части установлены поляроиды-анализаторы; R1, R2, R3 - значения сигналов на выходе первого, второго и третьего синхронных детекторов соответственно, когда установлена кювета с исследуемым раствором и на приемной части установлены поляроиды-анализаторы; Р1, Р2, Р3 - значения сигналов на выходе первого, второго и третьего синхронных детекторов соответственно, когда установлена кювета с исследуемым раствором и на приемной части нет поляроидов-анализаторов; V1, V2, V3 - значения сигналов на выходе первого, второго и третьего синхронных детекторов соответственно, когда отсутствует кювета с исследуемым раствором и на приемной части нет поляроидов-анализаторов. Во втором варианте измерение угла поворота плоскости поляризации способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733 производится по соотношению

способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733

где способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733

а W1, W2, W3, R1, R2, R3, Р1, Р2, Р3, V1, V2, V3 - те же значения сигналов, что в первом варианте. В третьем варианте измерение угла поворота плоскости поляризации способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733 производится по соотношению

способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733

где способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733

а W1, W2, W3, R1, R2, R3, Р1, Р2, Р3, V1, V2, V3 - те же значения сигналов, что и в первом варианте, параметры k1, k2 однозначно определяются по углам разворота поляроидов-анализаторов.

На чертеже представлена схема реализации предлагаемого способа измерения концентрации оптически активных веществ в растворах.

Схема реализации способа измерения концентрации оптически активных веществ в растворах (см. чертеж) содержит источник модулированного плоскополяризованного излучения 1, поляроиды-анализаторы 3.1, 3.2, 3.3, перед которыми расположена кювета с оптически активным анализируемым веществом 2, фотоприемники 4.1, 4.2, 4.3, усилители 5.1, 5.2, 5.3, генератор опорного напряжения 6, синхронные детекторы 7.1, 7.2, 7.3, блок вычислений 8, блок индикации 9.

В предлагаемом способе измерения концентрации оптически активных веществ в растворах поток излучения от источника модулированного плоскополяризованного излучения 1 при отсутствии кюветы поступает на входы поляроидов-анализаторов 3.1, 3.2, 3.3 и далее проходит через фотоприемники 4.1, 4.2, 4.3, усилители 5.1, 5.2, 5.3, синхронные детекторы 7.1, 7.2, 7.3. Сигналы на выходах синхронных детекторов 7.1, 7.2, 7.3 описываются соотношениями

способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733

где V1, V2, V3 - значения сигналов на выходах синхронных детекторов 7.1, 7.2, 7.3, когда отсутствует кювета с исследуемым раствором и на приемной части нет поляроидов-анализаторов, способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733 - коэффициент пропускания поляроидной пленки, y0 - угол разворота первого поляроида-анализатора относительно поляроида - источника плоскополяризованного излучения, x0 - угол разворота второго поляроида-анализатора относительно поляроида - источника плоскополяризованного излучения, y0способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733-x0, третий поляроид-анализатор ориентирован так же, как поляроид источника плоскополяризованного излучения. Из предыдущих выражений видно, что

способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733

Сигналы на выходах синхронных детекторов 7.1, 7.2, 7.3 при установленной кювете с исследуемым раствором оптически активного вещества 2 и установленных на приемной части поляроидов-анализаторов 3.1, 3.2, 3.3 описываются формулами

способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733

где Р1, Р2, Р3 - значения сигналов на выходах синхронных детекторов 7.1, 7.2, 7.3, когда установлена кювета с исследуемым раствором 2 и на приемной части нет поляроидов-анализаторов, способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733 - измеряемый угол поворота плоскости поляризации. По данным значениям W1, W2, W3, R1, R2, R3, Р1, Р2, Р3, V1, V2, V3 определяется промежуточное значение t по соотношению

способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733

Из этого соотношения после элементарных преобразований получается следующее выражение:

способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733

В первом варианте определение угла поворота плоскости поляризации в исследуемом растворе способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733 осуществляется по соотношению

способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733

а во втором варианте по данным значениям W1, W2, W3, R1, R2, R3, Р1, Р2, Р3, V1, V2, V3 определяется промежуточное значение z по соотношению

способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733

Из этого соотношения после элементарных преобразований получается следующее выражение:

способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733

Во втором варианте определение угла поворота плоскости поляризации в исследуемом растворе способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733 осуществляется по соотношению

способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733

В третьем варианте определение угла поворота плоскости поляризации в исследуемом растворе способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733 осуществляется по соотношению

способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733

где способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733

параметры k1, k2 однозначно определяются по углам разворота поляроидов-анализаторов. Реализация этого варианта возможна благодаря следующему равенству:

способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733

которое получится, если в формуле

способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733

подставить значения описанных ранее сигналов.

Вышеупомянутое равенство выполняется очень точно, например при x0=45.5, y0= -46.0, на диапазоне измерения угла способ измерения концентрации оптически активных веществ в   растворах, патент № 2180733 от 0 до 13o, k1=0.661560; k2= 2.784237; отклонение от равенства не превышает 0.000001 радиан. Поскольку равенство выполняется точно, то нет необходимости в явном измерении углов x0, у0, а параметры k1, k2 можно определить по эталонам.

Сбор информации и вычисления производятся в блоке вычислений 8.

В блоке индикации 9 высвечивается число, соответствующее концентрации оптически активного вещества в растворе.

Таким образом, можно избавиться от погрешностей измерения концентрации оптически активного вещества в растворе, вносимых неидентичностью каналов и неточной выставкой поляроидов.

Класс G01J4/04 поляриметры с использованием электрических детекторов

способ определения отклонения угла наклона плоскости поляризации оптического излучения -  патент 2527654 (10.09.2014)
оптоэлектронный анализатор поляризации оптического излучения -  патент 2477457 (10.03.2013)
способ определения знака циркулярной поляризации лазерного излучения -  патент 2452924 (10.06.2012)
способ измерения поляризационной чувствительности приемника оптического излучения (варианты) -  патент 2426078 (10.08.2011)
устройство измерения поляризационных параметров оптического излучения -  патент 2422783 (27.06.2011)
устройство компенсации фарадеевского вращения плоскости поляризации света -  патент 2365957 (27.08.2009)
устройство измерения параметров поляризации оптического излучения -  патент 2340879 (10.12.2008)
способ измерения азимута плоскости поляризации оптического излучателя -  патент 2337331 (27.10.2008)
устройство упругой поляризационной спектроскопии -  патент 2292531 (27.01.2007)
способ измерения изменений азимута плоскости поляризации оптического излучения -  патент 2276348 (10.05.2006)
Наверх