гидроизоляционный кровельный материал

Классы МПК:C08L95/00 Композиции битуминозных материалов, например асфальта, гудрона или вара
E04D5/02 из материалов, пропитанных уплотняющими веществами, например кровельного картона 
Автор(ы):, , , , ,
Патентообладатель(и):Строительное научно-техническое малое предприятие "ЭЗИП"
Приоритеты:
подача заявки:
1999-11-10
публикация патента:

Изобретение относится к строительству и может быть использовано в качестве гидроизоляции подземных сооружений, фундаментов и для мягкой кровли. Гидроизоляционный материал представляет собой смесь нефтешлама, содержащего 60-80 мас. % парафинов и церезинов, и наполнителя, в качестве которого используют глину фракции 0,1-1,0 мм или керамзитовую пыль при следующем соотношении компонентов, мас. %: нефтешлам 50-65, наполнитель до 100. Технический результат: гидроизоляционный материал обладает повышенными водозащитными свойствами и температурной хрупкостью, также позволяет решить острую экологическую проблему по утилизации нефтяных отходов - нефтешламов. 2 табл.
Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

Гидроизоляционный кровельный материал, включающий вязкую массу нефтяного происхождения и наполнитель, отличающийся тем, что в качестве вязкой массы используют нефтяной шлам, содержащий 60-80 мас.% парафинов и церезинов, а в качестве наполнителя используют глину фракции 0,1-1,0 мм или керамзитовую пыль при следующем соотношении компонентов, мас.%:

Нефтяной шлам - 50-65

Наполнитель - До 100

Описание изобретения к патенту

Изобретение относится к строительству, а именно к гидроизоляционным материалам, и может быть использовано в качестве гидроизоляции подземных сооружений, фундаментов и для мягкой кровли.

Известен гидроизоляционный материал - стеклорубероид, включающий основу, пропиточные и покрывные битумные слои и минеральную посыпку (ГОСТ 15879-93).

Недостатками этого материала являются высокое водопоглощение и низкие водонепроницаемость и хрупкость.

Наиболее близким к предлагаемому материалу является композиция для изготовления рубероида (авт. свид. СССР N 808442, С 04 В 26/26, 1981 г.), включающая 65-70 мас.% битума и 30-35 мас.% алеврита.

Недостатками данной композиции являются высокие водопоглощение и низкие водонепроницаемость и хрупкость.

Предлагаемый гидроизоляционный материал представляет собой смесь нефтешлама, содержащего 60-80 мас.% парафинов и церезинов, и наполнителя, в качестве которого используют глину фракции 0,1-1,0 мм или керамзитовую пыль при следующем соотношении компонентов, мас.%:

Нефтешлам - 50-65

Наполнитель - До 100

Такой гидроизоляционный материал не только позволяет повысить водозащитные свойства и хрупкость, но и решить острую экологическую проблему по утилизации нефтяных отходов - нефтешламов.

Нефтешлам представляет собой смесь нефти, нефтепродуктов и продуктов перегонки нефти, собранную при очистке сточных технологических и канализационных вод. Это тяжелые нефтяные остатки, имеющие различный химический состав в зависимости от технологической схемы переработки нефти и от технологических потерь в цепочке.

Это тяжелая вязкая жидкость с плотностью 0,86-0,97 г/см3, имеющая начало кипения 260-285oC и 50-55 об.% которой выкипает при 360oC. В среднем их состав может колебаться в пределах, мас.%:

Нефтепродукты - 10-85

Вода - 2-65

Механические примеси - 1-30

В качестве нефтепродуктов они могут содержать парафины, церезины, смолы, асфальтены, ароматические углеводороды, ацетонафтены и бензотиофены.

Ниже приведены составы нефтешлама Краснодарского НПЗ, которые были накоплены в 1-м и 2-м кварталах 2000 г. (см. табл. 1)

Гидроизоляционный кровельный материал готовят следующим образом. В емкость, снабженную мешалкой барабанного или пропеллерного типа, помещают нефтешлам и наполнитель и перемешивают при повышенной температуре 60-95oC в течение 20-30 минут. Полученную массу наносят на крышу, фундамент, пол или стены и сушат при температуре окружающей среды.

Испытания качества материала производили на образце кровельного материала размером 50х100х10 мм.

Высокие показатели гидроизоляционного кровельного материала иллюстрируют следующие примеры.

Пример 1

В емкость барабанного типа, снабженную мешалкой и помещенную в термостат, загружали 55 г нефтешлама, содержащего 70 мас.% парафинов и церезинов, и 45 г глины фракции 0,5 мм. При постоянном перемешивании поднимали температуру до 75oC со скоростью 50oC в час и по достижении 75oC вели перемешивание в течение 30 мин. Массу выгружали из емкости, охлаждали до комнатной температуры и наносили на нужную поверхность. Приготовленный образец испытывали на водопоглощение, водонепроницаемость и хрупкость по ГОСТ 2678-94.

Результаты испытания представлены в таблице 2.

Пример 2

Гидроизоляционный кровельный материал готовили по примеру 1 с той разницей, что брали 50 г нефтешлама, содержащего 80 мас.% парафинов и церезинов, а глина имела помол фракции 1,0 мм.

Результаты испытания представлены в таблице 2.

Пример 3

Гидроизоляционный кровельный материал готовили по примеру 1 с той разницей, что брали 65 г нефтешлама, содержащего 60 мас.% парафинов и церезинов, а глина имела помол фракции 0,1 мм.

Результаты испытания представлены в таблице 2.

Пример 4

Гидроизоляционный кровельный материал готовили по примеру 1 с той разницей, что вместо глины брали керамзитовую пыль.

Результаты испытания представлены в таблице 2.

Пример 5

Гидроизоляционный кровельный материал готовили по примеру 1 с той разницей, что брали 50 г нефтешлама, содержащего 70 мас.% парафинов и церезинов, и 50 г керамзитовой пыли.

Результаты испытания представлены в таблице 2.

Пример 6

Гидроизоляционный кровельный материал готовили по примеру 3 с той разницей, что нефтешлам содержал 70 мас.% парафинов и церезинов, а вместо глины использовали керамзитовую пыль.

Результаты испытания представлены в таблице 2.

Пример 7 (сравнительный)

Гидроизоляционный кровельный материал готовили по примеру 1 с той разницей, что количество парафинов и церезинов в нефтешламе составляло 58 мас. %.

Результаты испытания представлены в таблице 2.

Пример 8 (сравнительный)

Гидроизоляционный кровельный материал готовили по примеру 1 с той разницей, что фракция помола глины составляла 1,5 мм.

Результаты испытания представлены в таблице 2.

Пример 9 (сравнительный)

Гидроизоляционный кровельный материал готовили по примеру 1 с той разницей, что брали 45 г нефтешлама и 55 г глины.

Результаты испытания представлены в таблице 2.

Пример 10 (сравнительный)

Гидроизоляционный кровельный материал готовили по примеру 1 с той разницей, что брали 68 г нефтешлама и 32 г глины.

Результаты испытания представлены в таблице 2.

Пример 11 (по прототипу)

Композицию для изготовления рубероида готовили смешением 70 г битума и 30 г алеврита, нагреванием этой смеси до 165oC и перемешиванием в течение 40 мин. Полученную композицию охлаждали и готовили образец для испытаний 50х100х10 мм.

Результаты испытания представлены в таблице 2.

Как видно из данных, приведенных в таблице, предложенный гидроизоляционный материал обладает высокими качественными показателями. Однако эти показатели достижимы только в заявленных пределах качества нефтешлама, фракции используемой глины и соотношения компонентов.

Так, например, при содержании в нефтешламе парафинов и церезинов ниже заявленного предела (пр. 7) получаемый гидроизоляционный материал имеет высокое водопоглощение, низкую водонепроницаемость и низкую температуру хрупкости. Следует отметить, что в нефтешламе не наблюдалось содержания парафинов и церезинов более 80 мас.%.

При использовании глины фракции выше 1,0 мм (пр. 8) полученный гидроизоляционный материал имеет высокую температуру хрупкости, низкие показатели водопоглощения и водонепроницаемости.

При содержании нефтешлама в гидроизоляционном материале ниже заявленного предела (пр. 9) снижаются показатели водопоглощения и водонепроницаемости, а при содержании нефтешлама выше заявленного предела (пр. 10) дальнейшего улучшения показателей качества не наблюдается.

Таким образом, предложенный гидроизоляционный материал обладает высокими качественными показателями, а для приготовления используют дешевые и распространенные компоненты. Кроме того, использование такого материала позволит решить проблему по утилизации нефтешлама.

Класс C08L95/00 Композиции битуминозных материалов, например асфальта, гудрона или вара

способ получения битумно-каучукового вяжущего -  патент 2529552 (27.09.2014)
битумно-уретановое вяжущее и способ его получения -  патент 2527470 (27.08.2014)
квантово-активированная битумная эмульсия -  патент 2525547 (20.08.2014)
способ и устройство для приготовления модифицированных резинобитумных мастик -  патент 2525487 (20.08.2014)
высоконаполненный композиционный материал -  патент 2525074 (10.08.2014)
ресурсосберегающая щебеночно-мастичная смесь для строительства и ремонта дорожных покрытий -  патент 2524081 (27.07.2014)
гидроизоляционный материал -  патент 2522631 (20.07.2014)
способ получения полимерно-битумных композиций -  патент 2522618 (20.07.2014)
асфальтобетонная смесь -  патент 2522497 (20.07.2014)
асфальтобетонная смесь на наномодифицированном вяжущем -  патент 2521988 (10.07.2014)

Класс E04D5/02 из материалов, пропитанных уплотняющими веществами, например кровельного картона 

способ восстановления водонепроницаемости гидроизоляционного покрытия строительных конструкций -  патент 2293163 (10.02.2007)
способ восстановления водонепроницаемости гидроизоляционного покрытия строительных конструкций -  патент 2287046 (10.11.2006)
покрытие и способ его возведения -  патент 2187609 (20.08.2002)
способ приготовления гидроизоляционного кровельного материала -  патент 2175661 (10.11.2001)
полимерно-битумная композиция -  патент 2138459 (27.09.1999)
способ устройства кровель в местах температурно-усадочных швов -  патент 2109895 (27.04.1998)
способ восстановления водонепроницаемости гидроизоляционного покрытия строительных конструкций -  патент 2085675 (27.07.1997)
способ ремонта рубероидного битумосодержащего покрытия -  патент 2078883 (10.05.1997)
способ устройства кровли -  патент 2054103 (10.02.1996)
способ непрерывного изготовления рубероидного полотна -  патент 2029042 (20.02.1995)
Наверх