шихта для получения конструкционной глиноземистой керамики и способ изготовления изделий из нее

Классы МПК:C04B35/10 на основе оксида алюминия
Автор(ы):, ,
Патентообладатель(и):Институт химии Коми научного центра Уральского отделения РАН
Приоритеты:
подача заявки:
2000-03-07
публикация патента:

Изобретение относится к области получения конструкционных глиноземистых материалов из природных бокситов. Техническим результатом изобретения является разработка нового состава шихты и способа изготовления из нее конструкционной глиноземистой керамики с высокими и стабильными значениями механических характеристик. Результат достигается тем, что шихта содержит природный глиноземистый боксит и спекающие добавки: 6-12 мас.% диоксида титана в расчете на шихту, включая исходное содержание его в боксите и в зависимости от степени зажелезненности боксита, и 1-3 мас.% фторида кальция и/или флюорита. Используют боксит следующего химического состава, мас.%: Al2O3 69-80, TiO2 2,5-8,4, Fe2O3 1,08-4,65, SiO2 5-25, прочие примеси 0,7-2,8. Способ изготовления изделий из этой шихты включает смешение природного огнеупорного боксита с фторидной и оксидной спекающими добавками, предварительный обжиг, измельчение, прессование, сушку и спекание при температуре 1340-1420°С. 2 с. п.ф-лы.

Формула изобретения

1. Шихта для получения конструкционной глиноземистой керамики, включающая природный огнеупорный боксит, фторидную и оксидную спекающие добавки, отличающаяся тем, что она содержит в качестве оксидной добавки 6 - 12 мас.% диоксида титана в расчете на шихту, включая исходное содержание диоксида титана в боксите, в качестве фторидной добавки 1 - 3 мас.% фторида кальция и/или флюоорита, боксит - остальное, причем в качестве боксита - природный глиноземистый боксит следующего химического состава, мас.%:

Al2O3 - 69 - 80

TiO2 - 2,5 - 8,4

Fe2O3 - 1,08 - 4,65

SiO2 - 5 - 25

Прочие примеси - 0,7 - 2,8

2. Способ изготовления изделий из шихты для получения конструкционной глиноземистой керамики состава по п.1, включающий смешение природного огнеупорного боксита с фторидной и оксидной спекающими добавками, предварительный обжиг, измельчение, прессование, сушку и спекание, отличающийся тем, что спекание проводят при температуре 1340 - 1420oC.

Описание изобретения к патенту

Изобретение относится к области получения конструкционных керамических материалов из природных глиноземистых бокситов.

Известен прочный износостойкий керамический материал из природных бокситов и способ его получения (патент CN N 1199033, C 04 B 35/10, опубл. 18.11.98).

Способ предусматривает длительное перемалывание обожженных при 1350-1650oC бокситовых порошков до размера частиц 1-15 мкм, сушку распылением, формование и окончательную термическую обработку изделий.

Недостатком этого способа получения материала является длительная технологическая цепочка подготовки исходных порошков и высокие температуры обжига исходных смесей.

Известна также износостойкая глиноземистая керамика, полученная из бокситов горячим прессованием (Патент US N 3784388, C 04 B 35/10, опубл. 08.01.74).

Этот способ позволяет сократить процесс подготовки исходной шихты за счет использования порошков природных бокситов и получить керамический материал с размером зерна 1-8 мкм за счет образования жидкой фазы при 1200oC.

Недостатком данного способа получения керамического материала является высокая стоимость и сложность получения изделий требуемой формы.

Наиболее близким к предлагаемому изобретению, относящемуся к шихте, является шихта для получения конструкционной глиноземистой керамики (Патент RU N 2100315, C 04 B 35/10, 35/111, опубл. 27.12.97), содержащая природный огнеупорный боксит и спекающие добавки, фторидную - на основе фторида кальция и оксидную. Молярный состав спекающих добавок MgO:CaF2 = 7:1 при массовом соотношении боксита и спекающей добавки 50:3. При этом природный боксит имеет следующий химический состав, мас.%:

Al2O3 - 69,4

TiO2 - 3,42

Fe2O3 - 2,55

SiO2 - 8,18

прочие примеси (MnO, MgO, K2O, Na2O, P2O5, V2O5, Cr2O3, CaO) - 16,39

Эта шихта не позволяет получать из нее стабильные механические характеристики керамического материала на основе других бокситов, химический состав которых отличается от представленного в прототипе.

В этом же патенте описан способ изготовления изделий из шихты для получения конструкционной глиноземистой керамики, включающий смешение природного огнеупорного боксита указанного выше состава с фторидной и оксидной спекающими добавками, предварительный обжиг, измельчение, прессование, сушку и спекание, причем спекание проводят при температуре 1445шихта для получения конструкционной глиноземистой керамики   и способ изготовления изделий из нее, патент № 21684835oC.

Этот способ получения керамики не предусматривает регулирование количества микрокристаллов ортосиликатов магния, железа и кальция (Mg, Fe, Ca)2SiO4 в стеклофазе бокситовой керамики. Из-за высоких значений коэффициентов термического линейного расширения (КТЛР) ортосиликатов по сравнению с КТЛР корунда и других составляющих материал фаз, на границах зерен корунда возникают значительные напряжения, приводящие к критическому микрорастрескиванию. К недостаткам способа получения керамики относится также высокий нижний предел температуры спекания - 1440oC и узкий интервал температуры спекания керамических изделий, который составляет не более 10oC (1445шихта для получения конструкционной глиноземистой керамики   и способ изготовления изделий из нее, патент № 21684835oC). В результате незначительного увеличения температуры обжига происходит "пережог" изделий, что является следствием перехода в жидкое состояние железистых оливинов.

Предлагаемыми изобретениями решается задача получения нового состава шихты и способа изготовления из нее конструкционной глиноземистой керамики с высокими и стабильными значениями механических характеристик.

В этом и состоит технический результат изобретения.

Технический результат достигается тем, что в природный глиноземистый боксит следующего химического состава, мас.%:

Al2O3 - 69-80

TiO2 - 2,5-8,4

Fe2O3 - 1,08-4,65

SiO2 - 5-25

прочие примеси (MnO, MgO, К2О, Na2O, P2O5, V2O5, Cr2O3, CaO) - 0,7-2,8,

вводят спекающие фторидную и оксидную добавки, причем в качестве фторидной добавки берут 1-3 мас.% фторида кальция и/или флюорита, в качестве оксидной добавки - диоксид титана, доводят количество TiO2 до общего содержания его в шихте 6-12 мас.%, включая исходное содержание TiO2 в природном боксите и в зависимости от степени "зажелезненности" боксита.

На стадии подготовки порошковых смесей вводят определенные количества диоксида титана и фторида кальция и/или флюорита. Количество вводимого диоксида титана зависит от исходного содержания диоксида титана в природных бокситах, и в сумме должно составлять 6-12 мас.% в порошковой смеси и от степени "зажелезненности" боксита. Для менее "зажелезненных" бокситов (количество Fe2O3 1,08 -1,50 мас.%) достаточно 6 мас.% диоксида титана. Для бокситов с содержанием Fe2O3 3,00-4,65 мас.% - до 12 мас.% диоксида титана. При содержании диоксида титана свыше 12% происходит снижение механических характеристик получаемой керамики, ниже 6% - результат не достигается.

Для достижения названного технического результата по предлагаемому способу изготовления изделий из шихты для получения конструкционной глиноземистой керамики смешивают природный огнеупорный боксит заявляемого выше состава с фторидной и оксидной спекающими добавками, проводят предварительный обжиг, измельчение, прессование, сушку и спекание, при этом спекание проводят при температуре 1340-1420oC.

В процессе обжига глиноземистой титансодержащей керамики примеси Fe3+, Mg2+ и Ca2+ идут не на образование ортосиликатов, которые снижают трещиностойкость керамики, а на формирование титанатов магния, железа и кальция с последующим образованием твердых растворов на основе тиалита AlTiO5 и псевдобрукита Fe2TiO5. Т.о. при введении дополнительных добавок TiO2 уменьшается количество наиболее "вредных" для механических свойств материала примесей железа и кальция в корунде и в стеклофазе, увеличивается прочность и трещиностойкость керамического материала, а также расширяется температурный интервал спекания керамических изделий до 80oC.

Плотная микроструктура керамики с размером зерна 3-5 мкм формируется в процессе термообработки при 1360-1420oC за счет присутствия указанных добавок и содержит, кроме корундовой, муллитовую, титан-железосодержащую и аморфную фазы. Сочетание таких фаз повышает прочностные характеристики керамики.

Титан-железосодержащая фаза формируется и в керамике с добавками MgO и CaF2, т.к. в исходных бокситах диоксид титана присутствует в виде примесей, однако этого количества для большинства проб бокситов недостаточно, чтобы "очистить" материал от ортосиликатов.

Шихту составляют следующим образом.

В качестве глиноземистого компонента берут природный глиноземистый боксит следующего состава, мас.%: Al2O3 69-80; SiO2 5-25; Fe2O3 1,08-4,65; TiO2 2,5-8,4; другие примеси 0,7-2,8 (в различных сочетаниях MnO, Mg0, CaO, K2O, Na2O, P2O5, V2O5, Cr2O3). Порошки бокситов измельчают и смешивают с фторидной и оксидной спекающими добавками. Оптимальное соотношение боксита и добавок в шихтовой смеси зависит от содержания примесей оксида железа и диоксида титана в исходных бокситах. Смесь предварительно обжигают при температуре 1320oC. Затем обожженные порошки перемалывают до размера частиц 1-5 мкм. В качестве связки используют 5%-ный водный раствор КМЦ. Из полученной шихты с усилием 50 МПа прессуют балочки размером 6х6х60. После сушки образцов на воздухе производится обжиг при Т=1340-1420oC. Испытания на прочность и трещиностойкость проводят на разрывной машине ИР 5057-50 по методикам МНЦТК РАН (Баринов С.М., Шевченко В.Я. Прочность технической керамики. - М.: Наука, 1996. 159 с.).

Пример 1.

Берут 3 мас.% смеси порошков фторида кальция и флюорита (в соотношении 1: 1), смешивают с 5 мас. % порошка диоксида титана и с 92 мас.% порошка природного боксита с относительно высоким содержанием оксидов железа следующего химического состава, мас. %: Al2O3 78,74; SiO2 10,41; TiO2 4,97; Fe2O3 4,64; MnO 0,02; MgO 0,50; CaO 0,06; K2O 0,18; Na2O 0,30; P2O5 0,15, V2O5 0,01, Cr2O3 0,02. Изготавливают изделия по заявляемому способу. Физико-механические характеристики полученной керамики следующие: прочность на изгиб шихта для получения конструкционной глиноземистой керамики   и способ изготовления изделий из нее, патент № 2168483изг = 350-370 МПа, трещиностойкость К1c = до 6,9 МПашихта для получения конструкционной глиноземистой керамики   и способ изготовления изделий из нее, патент № 2168483м1/2, модуль Вейбулла m=13,2шихта для получения конструкционной глиноземистой керамики   и способ изготовления изделий из нее, патент № 21684830,8, плотность шихта для получения конструкционной глиноземистой керамики   и способ изготовления изделий из нее, патент № 2168483

Пример 2.

Берут природный боксит с относительно высоким содержанием диоксида титана следующего химического состава, мас.%: Al2O5 79,44; SiO2 8,95; TiO2 8,4; Fe2O3 1,08; MnO 0,04; MgO 1,86; CaO н/о; К2О 0,07; Na2O 0,06; P2O5 0,07; V2O5 0,03; Cr2O3 н/о. 1 мас.% порошка флюорита смешивают с 2 мас.% порошка диоксида титана и с 97 мас.% порошка боксита. Изготавливают изделия по заявляемому выше способу. Физико-механические характеристики полученной керамики следующие: прочность на изгиб шихта для получения конструкционной глиноземистой керамики   и способ изготовления изделий из нее, патент № 2168483 МПа, трещиностойкость K1c = 6,3-6,9 МПашихта для получения конструкционной глиноземистой керамики   и способ изготовления изделий из нее, патент № 2168483м1/2, модуль Вейбулла m=18шихта для получения конструкционной глиноземистой керамики   и способ изготовления изделий из нее, патент № 216848308, плотность шихта для получения конструкционной глиноземистой керамики   и способ изготовления изделий из нее, патент № 2168483

Пример 3 (контрольный). Берут природный боксит следующего химического состава, мас. %: Al2O3 78,74; SiO2 10,41; TiO2 4,97; Fe2O3 4,64; MnO 0,02; MgO 0,50; CaO 0,06; K2O 0,18; Na2O 0,30; P2O5 0,15; V2O5 0,01; Cr2O3 0,02.

Порошки бокситов смешивают с добавкой фторида кальция и оксида магния молярного состава MgO: CaF2=7:1 при массовом соотношении боксита и добавки 50: 3. Спекание производят при температуре, указанной в прототипе 1445oC. В результате обжига образцы получились "пережженными", т.к. исходный боксит характеризуются повышенным содержанием оксида железа.

Пример 4 (контрольный). Состав шихты по примеру 3 спекают при температуре Т=1360oC. При температуре обжига ниже 1360oC образцы не спекаются. Образцы керамики шлифуют и полируют. Физико- механические характеристики полученной керамики следующие: прочность на изгиб шихта для получения конструкционной глиноземистой керамики   и способ изготовления изделий из нее, патент № 2168483 МПа, трещиностойкость К1c = 4,5-5,1 МПашихта для получения конструкционной глиноземистой керамики   и способ изготовления изделий из нее, патент № 2168483м1/2, модуль Вейбулла m=8,7шихта для получения конструкционной глиноземистой керамики   и способ изготовления изделий из нее, патент № 21684830,6, плотность, шихта для получения конструкционной глиноземистой керамики   и способ изготовления изделий из нее, патент № 2168483

Пример 5 (контрольный). Берут природный боксит с относительно высоким содержанием диоксида титана следующего химического состава, мас.%: Al2O3 79,44; SiO2 8,95; TiO2 8,4; Fe2O3 1,08; MnO 0,04; MgO 1,86; CaO н/о; К2O 0,07; Na2O 0,06; P2O5 0,07; V2O5 0,03; Cr2O3 н/о. Порошки бокситов смешивают с добавкой фторида кальция и оксида магния молярного состава MgO:CaF2=7:1 при массовом соотношении боксита и добавки 50:3. Изготавливают изделия по заявляемому выше способу. Физико-механические характеристики полученной керамики следующие: прочность на изгиб шихта для получения конструкционной глиноземистой керамики   и способ изготовления изделий из нее, патент № 2168483 МПа, трещиностойкость К1/c = 5,1-5,3 МПашихта для получения конструкционной глиноземистой керамики   и способ изготовления изделий из нее, патент № 2168483м1/2, модуль Вейбулла m=9,9шихта для получения конструкционной глиноземистой керамики   и способ изготовления изделий из нее, патент № 21684830,6, плотность, шихта для получения конструкционной глиноземистой керамики   и способ изготовления изделий из нее, патент № 2168483

Сравнивая результаты, можно отметить, что керамика, полученная на основе природных бокситов с фторидной (фторид кальция и/или флюорит) и оксидной (диоксид титана) спекающими добавками, характеризуется не только более высокими значениями механических свойств (шихта для получения конструкционной глиноземистой керамики   и способ изготовления изделий из нее, патент № 2168483 на 50% по сравнению с контрольными образцами), но и высоким значением модуля Вейбулла, что говорит об однородности микроструктуры полученного керамического материала.

Класс C04B35/10 на основе оксида алюминия

проппант и способ его применения -  патент 2521680 (10.07.2014)
совокупность керамических частиц и способ ее изготовления (варианты) -  патент 2516421 (20.05.2014)
способ получения проппанта (варианты) и способ гидравлического разрыва пласта с использованием полученного проппанта (варианты) -  патент 2507178 (20.02.2014)
керамическое изделие и способ его изготовления -  патент 2478597 (10.04.2013)
высокопрочные расклинивающие наполнители -  патент 2473513 (27.01.2013)
способ изготовления корундовых изделий -  патент 2470896 (27.12.2012)
шихта и легированный шпинельный материал, полученный из нее -  патент 2433981 (20.11.2011)
способ получения теплоизоляционного гексаалюминаткальциевого материала -  патент 2433106 (10.11.2011)
способ изготовления вакуум-плотных изделий из керамического материала для электронной техники -  патент 2427554 (27.08.2011)
наноразмерное анионо-дефектное вещество на основе оксида алюминия для люминесцентного дозиметра ионизирующих излучений -  патент 2424273 (20.07.2011)
Наверх