состав для удаления асфальтеносмолопарафиновых отложений

Классы МПК:C09K3/00 Материалы, не отнесенные к другим рубрикам
E21B37/06 с использованием химических средств для предотвращения или уменьшения отложений парафина или подобных веществ
Автор(ы):, , , , , ,
Патентообладатель(и):Общество с ограниченной ответственностью "ЮганскНИПИнефть"
Приоритеты:
подача заявки:
1999-12-28
публикация патента:

Изобретение относится к нефтедобыче, в частности к составам для удаления асфальтеносмолопарафиновых отложений (АСПО), и может быть использовано для удаления АСПО из призабойной зоны пласта, выкидных линий, нефтесборных коллекторов и нефтепромыслового оборудования нефтедобывающих и нефтеперерабатывающих предприятий. Описывается состав для удаления АСПО, содержащий алифатические и ароматические углеводороды, полярный неэлектролит и НПАВ, предложено дополнительно ввести катионное ПАВ, при следующем соотношении ингредиентов, об.%: алифатические углеводороды 25-85; полярный неэлектролит 2-5; неионогенное ПАВ 1-2; катионное ПАВ 1-2; ароматические углеводороды остальное. Технический результат - создание состава для эффективного разрушения АСПО и повышение биостойкости состава к воздействию углеводородокисляющих бактерий (УОБ). 3 табл.
Рисунок 1, Рисунок 2

Формула изобретения

Состав для удаления асфальтеносмолопарафиновых отложений, содержащий алифатические и ароматические углеводороды, полярный неэлектролит и неионогенное поверхностно-активное вещество, отличающийся тем, что он дополнительно содержит катионное поверхностно-активное вещество при следующем соотношении компонентов, об.%:

Алифатические углеводороды - 25 - 85

Полярный неэлектролит - 2 - 5

Неионогенное поверхностно-активное вещество - 1 - 2

Катионное поверхностно-активное вещество - 1 - 2

Ароматические углеводороды - Остальное

Описание изобретения к патенту

Изобретение относится к области нефтедобычи, в частности к составам для удаления асфальтеносмолопарафиновых отложений (АСПО), и может быть использовано для удаления АСПО из призабойной зоны пласта, выкидных линий, нефтесборных коллекторов и нефтепромыслового оборудования нефтедобывающих и нефтеперерабатывающих предприятий.

Известен состав для удаления АСПО, содержащий гексановую и этилбензольную фракцию (/1/ авт.св. СССР N 1620465).

Недостатком известного состава является недостаточно высокая эффективность удаления АСПО.

Наиболее близким к предлагаемому техническому решению по технической сущности и достигаемому эффекту является состав для удаления АСПО, содержащий, об.%: алифатические 45-85 и ароматические углеводороды 5-45, полярный неэлектролит 1-15 и неионогенное поверхностно-активное вещество (НПАВ) 0,5-6 (/2/ US 4090562).

Однако указанный состав не обеспечивает высокую степень удаления АСПО и способен подвергаться биоразложению под воздействием нефтепромысловой бактериальной микрофлоры.

Решаемая предлагаемым изобретением задача - увеличение эффективности состава относительно разрушения АСПО и повышение биостойкости предлагаемого состава к воздействию углеводородокисляющих бактерий (УОБ), разрушающих молекулярные структуры углеводородов, входящих в состав композиции.

Поставленная задача решается тем, что известный состав для удаления АСПО, содержащий алифатические и ароматические углеводороды, полярный неэлектролит и НПАВ, дополнительно содержит катионное ПАВ, при следующем соотношении ингредиентов, об.%:

алифатические углеводороды - 25-85

полярный неэлектролит - 2-5

неионогенное ПАВ - 1-2

катионное ПАВ - 1-2

ароматические углеводороды - остальное.

Для получения предлагаемого состава использовались следующие вещества:

- алифатические углеводороды - гексан (ТУ 6-09-3375-78), петролейный эфир (ТУ 6-02-1244-83);

- ароматические углеводороды - нефрас А 130/150 (ГОСТ 10214-78);

- полярный неэлектролит - остаток кубовый производства бутиловых спиртов (ТУ 38.10216785), бутанол-1 (ГОСТ 5208-81);

- неионогенное ПАВ - оксиэтилированный алкилфенол АФ9-12 блоксополимер окисей этилена и пропилена Прогалит НМ 20/40;

- катионное ПАВ (соли четвертичного аммониевого основания) - хлориды алкил(C14-C17)триметиламмония и диалкил(C12-C14)диметиламмония.

Пример приготовления предлагаемого состава в лабораторных условиях рассмотрен ниже.

Пример. В колбу емкостью 250 мл последовательно вливают 1 мл оксиэтилированного алкилфенола АФ9-12, 2 мл хлорида алкил(C14-C17)триметиламмония мазеобразных консистенций, 2 мл кубовых остатков производства бутиловых спиртов и 70 мл нефраса А 130/150. Тщательно перемешивают полученную смесь путем взбалтывания до полного растворения ингредиентов. Затем в колбу дополнительно добавляют 25 мл гексана. Закрывают колбу притертой пробкой и перемешивают содержимое путем взбалтывания. Получают раствор со следующим соотношение ингредиентов, об.%: алифатический углеводород - гексан - 25; ароматический углеводород - нефрас А 130/150 - 70; полярный неэлектролит - остаток кубовый производства бутиловых спиртов - 2; неионогенное ПАВ - оксиэтилированный алкилфенол АФ9-12 - 1, соль четвертичного аммониевого основания - хлорид алкил(C14-C17)триметиламмония - 2.

Аналогичным образом осуществлялась подготовка составов с различным соотношением ингредиентов (табл. 1).

Данные о составе исследованных АСПО приведены в табл. 2.

Заявляемый состав испытывался на эффективность разрушения структуры АСПО по следующей методике.

Для испытания образец АСПО, характеристика которого приведена в табл. 2, набивали в полиэтиленовый шприц диаметром 10 мм, выдавливали и отвешивали полученную цилиндрическую форму АСПО массой около 2 г. Затем ее помещали в заранее взвешенную корзинку цилиндрической формы из нержавеющей стали с размером ячеек сетки 1х1 мм. Размер корзинки 20х15х15 мм. По разнице масс корзинки с АСПО и чистой корзинки определяли исходную массу АСПО (m0). Затем корзинку помещали в герметичную колбу и заливали составом в массовом соотношении АСПО:растворитель = 1:10. Выдерживали при температуре 20oC в течение 2 часов. По истечении данного времени корзинку вынимали, помещали в эксикатор, соединенный с водоструйным насосом. Производили сушку образца АСПО при остаточном давлении 2-3 мм рт.ст. до постоянной массы. По разнице масс корзинки с АСПО и чистой корзинки определяли массу оставшихся АСПО (m1). Эффективность разрушения структуры АСПО (Э,%) рассчитывали по формуле:

Э = (m0 - m1) состав для удаления асфальтеносмолопарафиновых отложений, патент № 2165953 100/m0, %

Полученные результаты приведены в табл. 3.

Данные, приведенные в табл. 3, показывают, что введение в заявляемый состав катионного ПАВ, в частности, хлоридов алкил(C14C17)триметиламмония и диалкил(C12-C14)диметиламмония, в количестве 1-2 об.% повышает разрушающую способность состава в отношении АСПО на 2-33%. Введение в состав катионного ПАВ, в частности, хлорида алкил(C14-C17)триметиламмония, в количестве 3 об.% не улучшает разрушающую способность состава в отношении АСПО.

Углеводородокисляющие бактерии, в частности микроорганизмы рода Pseudomonas широко распространены в нефтяных пластах (/3/ РОЗАНОВА Е.П. и др., Микрофлора нефтяных месторождений, М, Наука, 1974). Под их воздействием углеводороды нефтяной залежи подвергаются биодеструкции и окислению. В алифатических углеводородах под воздействием УОБ окисляется концевая метильная или ближайшая к ней метиленовая группа. Окисление протекает по общему биологическому пути - от спирта до кислоты. Отмечено микробиологическое дегидрирование алифатических углеводородов. Разрушение УОБ ароматических соединений происходит путем разрыва кольцевых структур. Расщеплению предшествует образование структур с гидроксильными группами. Наиболее легко подвергаются окислению ароматические углеводороды с боковыми цепями.

Органические растворители на основе алифатических и ароматических углеводородов в ходе хранения и использования в процессах нефтедобычи под воздействием УОБ способны изменять свои технологические свойства. Введение в состав растворителей катионных ПАВ способно предотвратить нарушение технологических свойств составов под воздействием УОБ за счет подавления их жизнедеятельности.

Эффективность подавления УОБ предлагаемым составом устанавливалась по РД 39-3-973-83 (/4/ РД 39-3-973-83 "Методика контроля микробиологической зараженности нефтепромысловых вод и оценка защитного и бактерицидного действия реагентов", Уфа, ВНИИСПТнефть, 1984) в следующей последовательности.

В маркированные пенициллиновые склянки с питательной средой Раймонда (5 мл) вводили по 0,5 мл накопительной культуры УОБ, выделенной из нефтепромысловых сред ОАО "Юганскнефтегаз". Туда же добавляли 5 мл состава (табл. 1) для удаления АСПО. Содержимое склянок перемешивали и ставили в термостат при температуре 32oC на 1 сутки.

Для каждого состава проводили три параллельных испытания.

Затем для посева культуры отбирали из каждой склянки по 0,5 мл водной фазы и вводили в 1-ю пенициллиновую склянку с питательной средой Раймонда. Содержимое перемешивали, отбирали 0,5 мл пробы и вводили во 2-ю пенициллиновую склянку с питательной средой Раймонда - разведение 1:10. Этим методом осуществлялись и последующие разведения 1:100, 1:1000, 1:10000, 1:100000. После посева все пенициллиновые склянки инкубировались при температуре 32oC в течение 15 суток.

Присутствие УОБ в пробах устанавливалось по истечении 15 суток по помутнению питательной среды в посевных флаконах. Содержание УОБ в водном слое, контактирующем с составом для удаления АСПО, представлено в табл. 3.

Как видно из представленных в табл. 3 данных, введение в заявляемый состав катионного ПАВ, в частности, хлоридов алкил(C14-C17)триметиламмония и диалкил(C12-C14)диметиламмония в количестве 1-2 об.% приводит к подавлению жизнедеятельности УОБ, развивающихся на границе водноуглеводородного контакта. Наблюдается либо полное подавление, либо снижение численности УОБ в 10000 раз.

Введение в состав катионного ПАВ, в частности, хлорида алкил(C14-C17)триметиламмония, в количестве 0,5 об.% снижает численность УОБ только в 100 раз.

Таким образом, заявляемый состав имеет следующие преимущества по сравнению с известным по прототипу составом:

- повышается разрушающая способность состава в отношении АСПО на 2-33%;

- обеспечивается его биостойкость в отношении углеводородокисляющих бактерий.

Класс C09K3/00 Материалы, не отнесенные к другим рубрикам

полимерная композиция для герметизации пьезокерамических приемоизлучающих гидроакустических устройств -  патент 2529542 (27.09.2014)
прямая заливка -  патент 2528845 (20.09.2014)
способ поэтапного получения противообледенительной жидкости с загустителем -  патент 2526378 (20.08.2014)
светочувствительная полимерная композиция, способы получения структуры и головка для подачи жидкости -  патент 2526258 (20.08.2014)
непрерывный способ получения отверждаемых влагой полиуретановых герметиков и адгезивов -  патент 2525912 (20.08.2014)
фотополимеризующаяся композиция для одностадийного получения полимерного нанопористого материала с гидрофобной поверхностью пор, нанопористый полимерный материал с селективными сорбирующими свойствами, способ его получения, способ одностадийного формирования на его основе водоотделяющих фильтрующих элементов и способ очистки органических жидкостей от воды -  патент 2525908 (20.08.2014)
способ поэтапного получения композиции загустителя противообледенительной жидкости и композиция загустителя -  патент 2525553 (20.08.2014)
абразивное зерно на основе циркониевого корунда -  патент 2523473 (20.07.2014)
антигололедная композиция (варианты) и способ ее изготовления -  патент 2523470 (20.07.2014)
осланцевание -  патент 2523317 (20.07.2014)

Класс E21B37/06 с использованием химических средств для предотвращения или уменьшения отложений парафина или подобных веществ

способ снижения вязкости углеводородов -  патент 2528344 (10.09.2014)
способ повышения добычи нефтей, газоконденсатов и газов из месторождений и обеспечения бесперебойной работы добывающих и нагнетательных скважин -  патент 2525413 (10.08.2014)
устройство для подачи реагента в скважину -  патент 2524579 (27.07.2014)
способ промывки скважинного глубинного электроцентробежного насоса -  патент 2513889 (20.04.2014)
способ ингибирования образования гидратов углеводородов -  патент 2504642 (20.01.2014)
устройство для подачи реагента в скважину -  патент 2502860 (27.12.2013)
способ депарафинизации нефтедобывающей скважины -  патент 2494231 (27.09.2013)
способ защиты напорных нефтепроводов от внутренней коррозии -  патент 2493481 (20.09.2013)
способ обработки призабойной зоны двухустьевой добывающей скважины -  патент 2490443 (20.08.2013)
устройство для подачи реагента в скважину -  патент 2490427 (20.08.2013)
Наверх