устройство для получения высокотемпературной плазмы и нейтронного излучения

Классы МПК:H05H1/00 Получение плазмы; управление плазмой
G21G4/02 источники нейтронов
Автор(ы):, , , ,
Патентообладатель(и):Российский федеральный ядерный центр - Всероссийский научно- исследовательский институт экспериментальной физики,
Министерство Российской Федерации по атомной энергии
Приоритеты:
подача заявки:
1998-05-08
публикация патента:

Использование: для получения высокотемпературной плазмы с целью изучения ее свойств, а также генерации нейтронного излучения. Техническим результатом является повышение температуры плазмы и уровня нейтронного излучения. Сущность изобретения: устройство содержит источник основной электромагнитной энергии, источник начального магнитного поля и плазменную камеру, образованную коаксиальными электродами и состоящую из отсека ускорения и отсека торможения плазмы, при этом основной источник электромагнитного поля подключен к электродам отсека ускорения, кольцевой зазор между электродами отсека ускорения выполнен в форме сопла Лаваля, отсек торможения - в виде кольцевого зазора между продолжениями электродов отсека ускорения плазмы, плазменная камера дополнительно содержит второй отсек ускорения плазмы, при этом второй отсек ускорения расположен за отсеком торможения и выполнен симметрично первому отсеку ускорения, кольцевой зазор между электродами второго отсека ускорения также выполнен в виде сопла Лаваля, а источник начального магнитного поля подключен к электродам второго отсека ускорения. 1 ил.
Рисунок 1

Формула изобретения

Устройство для получения высокотемпературной плазмы и нейтронного излучения, содержащее основной источник электромагнитной энергии, источник начального магнитного поля и плазменную камеру, образованную коаксиальными электродами и состоящую из отсека ускорения и отсека торможения плазмы, при этом основной источник электромагнитного поля подключен к электродам отсека ускорения, кольцевой зазор между электродами отсека ускорения выполнен в форме сопла Лаваля, отсек торможения выполнен в виде кольцевого зазора между продолжениями электродов отсека ускорения, отличающееся тем, что плазменная камера дополнительно содержит второй отсек ускорения плазмы, при этом второй отсек ускорения расположен за отсеком торможения и выполнен симметрично первому отсеку ускорения, кольцевой зазор между электродами второго отсека ускорения также выполнен в виде сопла Лаваля, а источник начального магнитного поля подключен к электродам второго отсека ускорения.

Описание изобретения к патенту

Изобретение относится к области плазменной техники и управляемого термоядерного синтеза и может быть использовано для получения высокотемпературной плазмы с целью изучения ее свойств, а также генерации нейтронного излучения.

Известно устройство для получения высокотемпературной плазмы, содержащее два электродинамических ускорителя с импульсным напуском газа, два плазмопровода, камеру торможения или взаимодействия, а также систему синхронизации этих ускорителей (см. статью А.М.Житлухин, В.М.Сафронов, В.В.Сиднев, Ю. В.Скворцов. Удержание высокотемпературной плазмы с устройство для получения высокотемпературной плазмы и   нейтронного излучения, патент № 2164363 = 1 в открытой ловушке, Письма в ЖЭТФ, т. 39, вып. 6, с. 247-249, 1984 г.). Ускорители устанавливались на расстоянии 7 м навстречу друг другу и запитывались от конденсаторных батарей емкостью 1150 мкФ каждая. Камеры ускорителей соединялись с камерой торможения тонкостенными металлическими плазмопроводами диаметром 30 см, в которых с помощью наружных многовитковых соленоидов создавалось квазистационарное профилированное магнитное поле. Камера торможения представляла собой аксиально-симметричную ловушку пробочной конфигурации длиной 2 м с напряженностью поля в пробках 14,4 кЭ. В результате столкновения двух плазменных потоков в ловушке образовывалась плазма с ионной температурой 2 кэВ, погонной плотностью 1,5устройство для получения высокотемпературной плазмы и   нейтронного излучения, патент № 21643631017 1/см и энергосодержанием 15 кДж. Время удержания плазмы при этом возросло с 18 до 40 мкс.

Недостатками известного устройства являются большие линейные размеры ускорителей и плазмопроводов, а также сложность осуществления процессов термоизоляции и проводки плазменных сгустков по плазмопроводам и ввода их в камеру взаимодействия (без продольного магнитного поля вообще нельзя ввести в плазмопровод и провести на расстояние 5 м до камеры взаимодействия потока плазмы с параметрами, обеспечивающими их некулоновское взаимодействие).

Наиболее близким к заявляемому техническому решению является устройство для получения высокотемпературной плазмы (см. авт. св. СССР N 1268080, МКИ H 05 H 1/00, авторы Гаранин С. Ф., Данов В.М., Долин Ю.Н. и др., заявлено 11.01.85, опубликовано 19.06.95, бюл. N 17), содержащее основной источник электромагнитной энергии, источник начального магнитного поля и плазменную камеру, образованную коаксиальными электродами и состоящую из отсека ускорения и отсека торможения плазмы, при этом основной источник электромагнитного поля подключен к электродам отсека ускорения, кольцевой зазор между электродами отсека ускорения выполнен в форме сопла Лаваля, отсек торможения выполнен в виде кольцевого зазора между продолжениями электродов отсека ускорения.

Электроды плазменной камеры отделены друг от друга двумя изоляторами. Электроды отсека торможения плазмы подключены к источнику начального магнитного поля. Оба отсека камеры заполнены дейтерием или смесью изотопов водорода.

К недостаткам устройства-прототипа можно отнести недостаточно высокие температура плазмы и уровень нейтронного излучения, а также отсутствие возможности изучения процессов столкновений плазменных потоков и ударных волн в замагниченной плазме.

Решаемая задача - создание условий для изучения процессов столкновений плазменных потоков и ударных волн в замагниченной плазме и влияния их на температуру плазмы и уровень нейтронного излучения.

Технический результат изобретения - повышение температуры плазмы и уровня нейтронного излучения.

Технический результат достигается тем, что по сравнению с известным устройством для получения высокотемпературной плазмы, содержащим источник основной электромагнитной энергии, источник начального магнитного поля и плазменную камеру, образованную коаксиальными электродами и состоящую из отсека ускорения и отсека торможения плазмы, при этом основной источник электромагнитного поля подключен к электродам отсека ускорения, кольцевой зазор между электродами отсека ускорения выполнен в форме сопла Лаваля, отсек торможения выполнен в виде кольцевого зазора между продолжениями электродов отсека ускорения плазмы, новым является то, что плазменная камера дополнительно содержит второй отсек ускорения плазмы, при этом второй отсек ускорения расположен за отсеком торможения и выполнен симметрично первому отсеку ускорения, кольцевой зазор между электродами второго отсека ускорения также выполнен в виде сопла Лаваля, а источник начального магнитного поля подключен к электродам второго отсека ускорения.

Введение в плазменную камеру второго отсека ускорения, расположенного за отсеком торможения симметрично первому отсеку ускорения и подключенного к источнику начального магнитного поля, а также выполнение кольцевого зазора между электродами второго отсека ускорения в виде сопла Лаваля, направленного навстречу первому соплу Лаваля обеспечивают то, что физические процессы в прототипе и в предлагаемом устройстве качественно и количественно отличаются друг от друга:

- в прототипе обмен энергией происходит между "горячими" высокоэнергетическими ионами, ускоренными в отсеке ускорения, и "холодными" ионами отсека торможения, в результате чего остаточная температура плазмы в отсеке торможения снижается с 10 до 3 кэВ;

- в предлагаемом устройстве, кроме взаимодействия "горячих" ионов из первого и второго отсеков ускорения с "холодными" ионами общего отсека торможения, дополнительно происходит взаимодействие друг с другом "горячих" ионов из первого и второго отсеков ускорения. А так как потоки плазмы из первого и второго отсеков ускорения имеют большую скорость и направлены навстречу друг другу, то столкновение ионов и ударных волн происходит в "лоб" и наблюдается значительное энерговыделение, причем большая часть этой энергии идет на нагрев плазмы в общем отсеке торможения. В результате остаточная температура плазмы в отсеке торможения предлагаемого устройства поднимается примерно до 10 кэВ.

На чертеже изображены продольный разрез плазменной камеры предлагаемого устройства и схема ее питания.

Устройство для получения высокотемпературной плазмы и нейтронного излучения содержит источник основной электромагнитной энергии 1, источник начального магнитного поля 2 и плазменную камеру 3.

Плазменная камера 3 образована коаксиальными внутренним электродом 4 и наружным электродом 5 и содержит первый 6 и второй 7 отсеки ускорения плазмы, а также общий отсек 8 торможения плазмы.

Первый 6 и второй 7 отсеки ускорения плазмы выполнены зеркально симметрично друг другу, кольцевые зазоры между электродами отсеков ускорения выполнены в виде противоположно направленных сопл Лаваля 9 и 10. Отсек торможения 8 плазмы расположен в средней части плазменной камеры - в промежутке между "горбами" внутреннего электрода 4.

Источник основной электромагнитной энергии 1 подключен к электродам первого отсека 6 ускорения плазмы, источник начального магнитного поля 2 - к электродам второго отсека 7 ускорения плазмы.

Внутренний 4 и наружный 5 электроды плазменной камеры выполнены из бескислородной меди и изолированы друг от друга при помощи керамических изоляторов 11 и 12.

Плазменная камера заполнена дейтерием или смесью изотопов водорода при начальном давлении 1-2 мм рт. ст. Длина камеры 21 см, диаметр 20 см.

В качестве источника основной электромагнитной энергии может служить взрывомагнитный генератор с узлом быстрого переключения тока, который обеспечивает переброс энергии в камеру на уровне 0,12 МДж за время 2 мкс (см. книгу Г. Кнопфель. Сверхсильные импульсные магнитные поля. М., Мир, 1972, с. 221). В качестве источника начального магнитного поля может быть использована конденсаторная батарея с понижающим трансформатором.

Работает устройство следующим образом.

Вначале в плазменную камеру 3 путем пропускания по внутреннему электроду 4 и наружному электроду 5 тока от источника 2 вводят начальное азимутальное магнитное поле напряженностью 15-25 кЭ. Начальное магнитное поле вводят достаточно медленно за 200-300 мкс, чтобы избежать электрических пробоев в области сопел 9 и 10 и по поверхностям изоляторов 11 и 12 в отсеках ускорения плазмы (по кривой Пашена для водорода пробойное напряжение составляет примерно 250 В). После этого включают источник основной электромагнитной энергии 1 - взрывомагнитный генератор с узлом быстрого переключения тока, который выдает токовый импульс с большой амплитудой и крутым фронтом. Между внутренним 4 и наружным 5 электродами камеры появляется высокое напряжение и происходит электрический пробой по поверхностям изоляторов 11 и 12 (между боковыми стенками наружного электрода 5 и боковыми поверхностями внутреннего электрода 4). Газ ионизируется и становится проводящим. Проводимости достаточно для вмораживания начального магнитного поля в образовавшуюся плазму. Нарастающий ток и нарастающее в камере давление магнитного поля ускоряют плазму одновременно в первом 6 и втором 7 отсеках ускорения по направлению к соплам 9 и 10 Лаваля. При достаточно быстром нарастании напряженности основного магнитного поля до 60-80 кЭ и достаточно малой ширине сопл Лаваля напряженность магнитного поля в отсеках ускорения растет быстрее, чем в отсеке торможения 8, и скорость плазменных струй на выходе из сопл Лаваля становится выше местной альфвеновской скорости звука. В результате на выходе из сопл Лаваля - в камере торможения плазмы 8 за счет противодавления начального магнитного поля формируются ударные волны, в которых происходит торможение и нагрев плазмы, и генерируется нейтронное излучение.

Потоки замагниченной плазмы и ударные волны из правого и левого сопл Лаваля, имеющие большие осевые и радиальные скорости, сталкиваются, смешиваются и интерферируют друг с другом в общей камере торможения плазмы 8, при этом происходит дополнительный нагрев плазмы, возрастают амплитуда и длительность нейтронного излучения.

По сравнению с прототипом в предлагаемом устройстве за фронтом ударной волны вблизи плоскости столкновения плазменных потоков, согласно расчетным оценкам плотность плазмы может увеличиться в 4 раза, а температура в 10 раз. Уровень нейтронного излучения соответственно может увеличиться в среднем в 10 раз.

Таким образом, предлагаемое устройство позволяет проводить научные исследования по изучению столкновительных и кумулятивных процессов в замагниченной термоядерной плазме, причем с меньшими затратами на сооружение экспериментальных установок и потерями энергии на транспортировку плазменных потоков, а также с большими температурой и внутренней энергией плазмы.

Класс H05H1/00 Получение плазмы; управление плазмой

электродуговой шестиструйный плазматрон -  патент 2529740 (27.09.2014)
высоковольтный плазмотрон -  патент 2529056 (27.09.2014)
устройство с магнитным удержанием плазмы, типа "открытая ловушка с магнитными пробками" -  патент 2528628 (20.09.2014)
магнитный блок распылительной системы -  патент 2528536 (20.09.2014)
стационарный плазменный двигатель малой мощности -  патент 2527898 (10.09.2014)
электрод плазменной горелки -  патент 2526862 (27.08.2014)
охлаждающая труба, электродержатель и электрод для плазменно-дуговой горелки, а также состоящие из них устройства и плазменно-дуговая горелка с ними -  патент 2524919 (10.08.2014)
плавильный плазмотрон -  патент 2524173 (27.07.2014)
система электростатического ионного ускорителя -  патент 2523658 (20.07.2014)
способ формирования компактного плазмоида -  патент 2523427 (20.07.2014)

Класс G21G4/02 источники нейтронов

Наверх