волоконно-оптический автогенератор
| Классы МПК: | G01D5/353 с воздействием на передающую способность оптического волокна |
| Автор(ы): | Малков Я.В., Бурков В.Д., Кузнецова В.И., Потапов В.Т., Гориш А.В., Котов А.Н., Егоров Ф.А. |
| Патентообладатель(и): | Московский государственный университет леса |
| Приоритеты: |
подача заявки:
1999-12-28 публикация патента:
20.02.2001 |
Использование: волоконно-оптические автоколебательные системы на основе микромеханического резонатора, в системах измерения различных физических величин. Сущность изобретения: в волоконно-оптическом автогенераторе коллимирование луча, взаимодействующего с микрорезонатором 5, осуществляется с помощью волоконного автоколлиматора 3. Волоконный автоколлиматор 3 выполнен в виде участка одномодового кварцевого световода со сферической микролинзой, сформированной непосредственно на торце этого световода. Технический результат: снижение массы и габаритов автогенератора; повышение надежности, точности, стабильности, быстродействия; увеличение эффективности волоконно-оптического лазера и микрорезонатора. 2 ил.
Рисунок 1, Рисунок 2
Формула изобретения
Волоконно-оптический автогенератор, включающий источник оптического излучения, выполненный в виде волоконно-оптического лазера, автоколлиматор, микрорезонатор, отличающийся тем, что в качестве автоколлиматора используют волоконный автоколлиматор, выполненный в виде участка одномодового кварцевого световода со сферической микролинзой, сформированной на торце этого световода, при этом кварцевый световод с микролинзой из кварцевого стекла соединяют с помощью сварки в электрической дуге.Описание изобретения к патенту
Изобретение относится к волоконно-оптическим автоколебательным системам на основе микрорезонатора и может быть использовано в системах измерения различных физических величин (температуры, давления, ускорения - Т, Р, g и др.). Известны работы по созданию нового класса волоконно-оптических автогенераторов на основе использования микрорезонатора (МР), автоколлиматора (АК) и оптического когерентного излучения, взаимодействующего с МР. В литературе сообщается о разработках различных схем по оптическому возбуждению колебаний МР и их практической реализации. Известно техническое решение (заявка PCT WO 89/00677, кл. G 01 D 5/26, 26.01.89 г.), взятое в качестве аналога, содержащее лазерный источник оптического излучения со световодом и микрорезонатор, причем один торец световода сопряжен с коллиматором, расположенным между этим торцом и микрорезонатором, а второй торец является выходным. Наиболее близким к предлагаемому техническому решению по технической сущности и достигаемому результату является волоконно-оптический автогенератор с оптическим методом возбуждения колебаний МР и частотным съемом информации (см. патент РФ N 2135958, опубл. в БИ N 24 от 27.08.99 г.). Конструктивно автогенератор представляет собой устройство, содержащее в качестве источника излучения волоконно-оптической лазер (ВОЛ), одномодовый световод, один торец которого сопряжен с МР, а другой является выходным. При этом отражающая поверхность МР образует с выходным торцом световода двухзеркальный оптический резонатор волоконно-оптического лазера. Кроме того, устройство содержит автоколлиматор, расположенный между световодом и МР. В качестве автоколлиматора применяется градиентная стержневая линза в четверть периода, формирующая Гауссовы пучки с параметрами: диаметр перетяжки пучка 2WO = 780 мкм, угол расходимости 2
= 2,6
10-3 рад. Оптическая ось пучка образует с отражающей поверхностью МР заданный угол
и.Непосредственная связь автогенератора с цифровыми устройствами измерения без необходимости преобразования аналог-цифра, большая протяженность канала передачи и высокая точность при контроле измерения резонансной частоты делают этот тип автогенераторов перспективным при его использовании в волоконно-оптических датчиках физических величин. Недостатком данного аналога является то, что под действием таких переменных факторов, как температура, давление, ускорение и др., резко изменяются характеристики коллимированного пучка вследствие деформации структуры клеевых соединений, определяющих жесткость крепления стержневых линз. В результате изменяются параметры коллимированного пучка, смещается его оптическая ось относительно МР, что в целом приводит к уменьшению надежности устройства, снижению временной стабильности целевой функции, т.е. (Т, Р, g), и, следовательно, - снижению точности измерений и сокращению диапазона измерений. Задача, решаемая данным изобретением, заключается в разработке волоконно-оптического автогенератора на основе волоконно-оптического лазера, взаимодействующего с МР через волоконный автоколлиматор. Решение поставленной задачи обеспечивается тем, что в волоконно-оптическом автогенераторе, включающем источник оптического излучения, выполненный в виде волоконно-оптического лазера, автоколлиматор, микрорезонатор, в качестве автоколлиматора используют волоконный автоколлиматор, выполненный в виде участка одномодового кварцевого световода со сферической микролинзой, сформированной на торце этого световода, при этом кварцевый световод с микролинзой из кварцевого стекла соединяют с помощью сварки в электрической дуге. Суть предлагаемого технического решения заключается в разработке волоконно-оптического автогенератора, в котором коллимирование луча, взаимодействующего с МР, осуществляется с помощью волоконного автоколлиматора. Волоконный автоколлиматор выполнен в виде участка одномодового кварцевого световода со сферической микролинзой, сформированной непосредственно на торце этого световода. В Гауссовом приближении зависимость параметров коллимированного пучка d,
0 от геометрических размеров микролинзы и характеристик световода описывается выражениями
где d - диаметр коллимированного пучка, формируемого микролинзой на ее выходе;
0 - угол расходимости коллимированного пучка;dc - диаметр световедущей сердцевины световода;
NA - числовая апертура одномодового световода;
l - длина микролинзы;
n - показатель преломления материала микролинзы. Радиус микролинзы R рассчитывается по формуле

которая получена из условия, что торец световода располагается в фокальной плоскости микролизны, а показатель преломления среды (воздуха), в которой распространяется коллимированный пучок, принят равным 1. Оптимальное значение расстояния L между микролинзой и МР определяется экспериментально из условия максимального значения отношения сигнал-шум. Стабильность параметров коллимированного пучка обеспечивается, во-первых, конструкцией волоконного автоколлиматора, представляющей собой монолитную структуру из одномодового материала, в которой соединение кварцевого световода с микролинзой из кварцевого стекла осуществляется с помощью сварки в электрической дуге, позволяющей получить высокую механическую прочность и эффективное оптическое сопряжение элементов, во-вторых, слабым влиянием дестабилизирующих факторов (изменений температуры, давления, электромагнитных полей и др.) на показатель преломления и геометрические размеры микролинзы. Так, в соответствии с формулой (1) исходя из известных значений термооптических и фотоупругих характеристик для кварцевого стекла (световода) получим оценки


Это значит, что в диапазоне температур 0-800oC изменения параметров коллимированного пучка не превышают соответственно 5 и 3%. Далее отметим, что при данном способе возбуждения автоколебаний в системе ВОЛ-МР, суть которого заключается в модуляции добротности двухзеркального оптического резонатора ВОЛ за счет модуляции угла отклонения оптического пучка от МР, параметры оптического пучка и геометрические размеры МР тесно взаимосвязаны. Так, основным фактором, определяющим эффективность взаимодействия ВОЛ и МР является угол расходимости пучка
0, определяющий ширину интервала 
и =
2-
1, а именно, чем меньше угол расходимости
o. тем больше ширина интервала 
и и наоборот. Что касается геометрических размеров МР, то они должны быть соизмеримы с диаметром коллимированного пучка: увеличение линейных размеров МР приводит к значительным изменениям коэффициента преобразования, а уменьшение - к потере полезной мощности излучения лазера. В предлагаемой конструкции волоконного автоколлиматора АК обеспечивается возможность вариации значений
0 в широких пределах, что увеличивает ширину зоны существования устойчивых автоколебаний и, следовательно, повышает эффективность взаимодействия ВОЛ и МР. Для иллюстрации возможностей волоконного автоколлиматора ниже приводятся оценки параметров коллимированных пучков d,
0 при типичных значениях геометрических размеров волоконных автоколлиматоров и характеристик одномодового световода. Имеем придиаметре микролинзы, D (мкм), 200-300
длине микролинзы, l (мкм), 700-900
радиусе микролинзы, R (мкм), 200-300
параметрах одномодового световода (
= 1,55 мкм, NA = 0,15, dc = 5,5 мкм)следующие параметры коллимированных пучков:
- диаметр коллимированного пучка, формируемого микролинзой на ее выходе (мкм), d = 50-150
- угол расходимости коллимированного пучка (рад)
0 = 8
10-3 - 2
10-2. На фиг. 1 представлена схема волоконно-оптического автогенератора по данному изобретению, где 1 - волоконно-оптический лазер, активированный эрбием, накачка которого осуществляется на длине волны
н = 0,98 мкм, 2 - одномодовый световод, 3 - волоконный автоколлиматор, выполненный в виде участка одномодового кварцевого световода со сферической микролинзой, сформированной непосредственно на торце световода, 4 - зеркало M1 оптического резонатора, в качестве которого служит граница раздела световод-воздух, 5 - микрорезонатор, представляющий собой кремниевую мембрану (микромостик, микроконсоль), полученную методом анизотропного травления,
и - угол между нормалью к отражающей поверхности МР и оптической осью пучка, сформированного автоколлиматором 3, 6 - зеркало M2, в качестве которого служит отражающая поверхность МР, l - длина микролинзы, D - диаметр микролинзы, d - диаметр коллимированного пучка, H - расстояние между микролинзой и МР, 7 - микролинза, R - радиус микролинзы 7. Устройство работает следующим образом. Часть мощности
оптического пучка, сформированного автоколлиматором 3, отражается от поверхности 6 микрорезонатора 5, нормаль к которой в исходном положении составляет угол
и с осью пучка света, и возвращается обратно в резонатор волоконно-оптического лазера 1. Изменение мощности излучения волоконно-оптического лазера 1 W1, падающей на МР 5, приводит вследствие эффекта фотоиндуцированной деформации к модуляции угла отклонения отраженного пучка
(t), т.е. к модуляции
[
(t)]. На фиг. 2 приведена экспериментальная зависимость
(
). Экспериментальные результаты показали, что независимо от топологии и конструкции МР при выполнении заданных требований в рассматриваемом устройстве устанавливается автоколебательный режим с частотой f, равной частоте МР: f
F. Как видно из фиг. 2, область существования автоколебаний (
1,
2) для основной моды колебаний расположена целиком на одной ветви кривой
(
).Это указывает на то, что модуляция добротности оптического резонатора обусловлена модуляцией угла отклонения пучка, а не дополнительной его фокусировкой (дефокусировкой) вследствие искривления поверхности МР при автоколебаниях. Кроме того, эксперимент показал, что при изменении расстояния H между микролинзой 7 и МР 5 в значительных пределах (
1,5 мм) срыва автоколебаний не наблюдалось, при этом относительное изменение частоты
F/F составляло 3
10-4. Таким образом, предложен новый принцип построения волоконно-оптического автогенератора, содержащего волоконный автоколлиматор, обеспечивающий высокую стабильность параметров коллимированного пучка в широком диапазоне воздействия дестабилизирующих факторов. Изобретение позволяет получить следующие положительные свойства:- снижение массы и габаритов автогенератора;
- повышение надежности, точности, стабильности, быстродействия;
- увеличение эффективности взаимодействия волоконно-оптического лазера и микрорезонатора.
Класс G01D5/353 с воздействием на передающую способность оптического волокна
