микрочастицы диоксида ванадия, способ их получения, в частности для поверхностных покрытий
Классы МПК: | C01G31/02 оксиды |
Автор(ы): | Пьер ЛЕГРАН (FR), Жан-Раймон ГАВАРРИ (FR), Жан-Кристоф ВАЛЬМАЛЕТ (FR), Жильбер ВАКЬЕ (FR), Даниель ЛЕФЕВР (FR) |
Патентообладатель(и): | Ле Пантюр Жефко (FR) |
Приоритеты: |
подача заявки:
1995-11-03 публикация патента:
20.01.2001 |
Изобретение относится к получению частиц, обладающих термохромными свойствами. Частицы диоксида ванадия формулы 1-xMxO2, где 0
x
0,05, M=Nb, Ta, Mo или W, имеющие размер менее 5 мкм, обладают термохромными свойствами. Легированный или нелегированный гексаванадат аммония подвергают пиролизу. Температура пиролиза 400-650oС. Температуру увеличивают со скоростью по меньшей мере 100oС/мин. Газы, образующиеся в результате пиролиза, поддерживают в объеме, где идет процесс в контакте с реакционной средой в течение не менее 0,5 ч. Получают частицы с термохроными свойствами. Из частиц получают композиции поверхностных покрытий. Результат изобретения - получение материала, который автоматически уменьшает пропускание солнечных лучей, когда материал достигает заданного уровня. 3 с. и 10 з.п.ф-лы, 9 ил., 5 табл.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10


Формула изобретения
1. Микрочастицы диоксида ванадия формулыV1-xMxO2,
где 0


М представляет собой легирующий металл,
отличающиеся тем, что указанные микрочастицы имеют размер менее 5 мкм, предпочтительно 0,1 - 0,5 мкм и проявляют термохромные свойства в результате структурного изменения. 2. Микрочастицы по п.1 формулы
V1-xMxO2,
где М представляет собой металл, выбранный из переходных элементов, обладающих ионным радиусом, большим чем у ванадия, таких как Nb или Ta, или электронным вкладом, таким как у Mo и W. 3. Микрочастицы по п.1 или 2 формулы
V1-xMxO2,
где x принимает значения в интервале от 0 до 0,02. 4. Микрочастицы по любому из пп.1 - 3, отличающиеся тем, что их используют для получения композиций поверхностных покрытий. 5. Способ получения частиц диоксида ванадия формулы
V1-xMxO2,
где М представляет собой легирующий металл;
0


пиролизом легированного или нелигированного гексаванадата аммония, отличающийся тем, что указанный пиролиз проводят при температуре в интервале приблизительно 400 - 650oС при скорости увеличения температуры по меньшей мере 100oС/мин и газы, образующиеся в результате указанного пиролиза, поддерживают в ограниченном объеме и в непосредственном контакте с реакционной средой в течение периода времени, по меньшей мере, 0,5 ч, предпочтительно 1 ч. 6. Способ по п.5, отличающийся тем, что указанный способ проводят с гексаванадатом аммония, легированным металлом, выбранным из металлов, определенных в п.2. 7. Способ по п.5 или 6, отличающийся тем, что скорость увеличения температуры составляет по меньшей мере 200oС/мин, предпочтительно по меньшей мере 300oС/мин. 8. Способ по любому одному из пп.5 - 7, отличающийся тем, что продолжительность удержания газов, образующихся в процессе пиролиза, составляет по меньшей мере 5 мин, предпочтительно 0,5 - 2 ч. 9. Способ по любому одному из пп.5 - 8, отличающийся тем, что перед пиролизом гексаванадат аммония подвергают дегазации при температуре ниже 230oС и осуществлению первичной откачки насосом под вакуумом в течение по меньшей мере 1 мин. 10. Способ по любому одному из пп.5 - 9, отличающийся тем, что после пиролиза полученный диоксид ванадия подвергают стадии прокаливания в атмосфере инертного газа при температуре по меньшей мере 600oС в течение периода времени по меньшей мере 1 ч. 11. Способ по любому одному из пп.5 - 10, отличающийся тем, что после пиролиза и после стадии прокаливания диоксид ванадия охлаждают в атмосфере инертного газа до температуры приблизительно 120oС. 12. Способ по любому одному из пп.5 - 11, отличающийся тем, что полученный диоксид ванадия после пиролиза, причем после указанного пиролиза необязательно следует стадия прокаливания и/или стадия охлаждения, подвергают измельчению. 13. Композиции поверхностных покрытий, которые содержат микрочастицы по любому одному из пп.1 - 3.
Описание изобретения к патенту
Предметом данного изобретения является диоксид ванадия в виде микрочастиц, способ получения указанных микрочастиц и их применение, особенно для нанесения поверхностных защитных покрытий, в которые они вводятся. В соответствии с первым аспектом изобретение относится к микрочастицам диоксида ванадия формулы V1-xМxO2, где 0



- скорость повышения температуры составляет по меньшей мере 100oC/мин, предпочтительно 200oC/мин или 300oC,
- отсутствие откачки газов, образующихся в результате термического разложения гексаванадата аммония, особенно NH3, которые поддерживают в ограниченном объеме и в контакте с реакционной средой по меньшей мере 5 мин, предпочтительно от 0,5 до 2 ч, и самое большее на всем протяжении всей продолжительности синтеза позволяет получение полной реакции без какого-либо образования остаточного V2O5 в соответствии со следующей схемой реакции:
(NH4)2V6O16--->NH3 + V2O5--->VO2 + H2O + N2
Фактически можно отметить, что при высокой скорости пиролиза происходит "flash" - реакция, в результате которой образуется N2O, который медленно разлагают, при взаимодействии с избытком NH3 с образованием H2O и N2. Кроме того, на сегодняшний день, в большинстве существующих печах, либо освобождают место проведения реакции, удаляя полученный газообразный аммиак NH3 и таким образом останавливая восстановление, в результате чего получают только V6O13 и не дают возможности дальнейшему взаимодействию до получения оксида ванадия, VO2, V2O4, или наоборот, в других способах, в которых добавляют NH3 циркуляцией, что вызывает слишком значительное восстановление и приводит к реакции получения V2O3 и смеси различных оксидов ванадия. Преимущественно газы, образующиеся в результате термического разложения гексаванадата аммония, собирают в газовый мешок (хранилище) под небольшим давлением, например приблизительно 0,5 бар, помещенный предпочтительно на уровне более высоком, чем уровень реактора. Температура пиролиза должна находиться в интервале от приблизительно 400oC до приблизительно 650oC, предпочтительно 635oC. Если температура выше приблизительно 650oC, присутствующий в реакционной среде V2O5 может расплавиться до взаимодействия. С другой стороны, температура реакции ниже приблизительно 400oC приводит к нетермохромному VO2 (B). В случае получения частиц легированного диоксида ванадия эта продолжительность должна быть также фиксирована таким образом, чтобы получить легирующую гомогенность при предотвращении роста зерен путем оптимизации условий "температура-время". Например, для степени легирования 5% W, условие (см. табл. 1 в конце описания). Если необходимо получить микрочастицы диоксида ванадия с температурой структурного перехода, отличной от 68oC (соответствующей чистому диоксиду ванадия), необходимо добавить к нему продукт-заместитель, стабильная валентность которого должна быть больше чем 4. В предпочтительном аспекте, в качестве продукта-заместителя будет использоваться металл, выбранный из Nb, Ta, Mo и W, причем предпочтительными являются W и Mo. Замещение вольфрамом (W) позволяет получить конечный продукт со значительным градиентом температурного изменения, как функция процента замещения: значительный градиент позволяет фактически охватывать до некоторой степени большой интервал температур. Таким образом, для примеров величины x, указанной выше, получают температуру перехода, приведенную в табл. 2 (см. в конце описания). В предпочтительном аспекте способа, следовательно, используют гексаванадат аммония, который легируют металлом, выбранным из Nb, Ta, Mo и W, причем предпочтительными являются W и Mo. В следующей части описания выражение "легированием металлом" металл является таким, как определено выше, означает, что легирование проводят, используя металл в чистой форме или в форме соединения, содержащего этот металл, такого как, особенно, вольфрамат или молибдат. Гексаванадат аммония, используемый в способе в соответствии с данным изобретением, является коммерчески доступным. Он может быть также получен известным способом из метаванадата аммония. В том случае, когда необходимо получить микрочастицы легированного диоксида ванадия, либо может быть легирован гексаванадат аммония, либо легирующий металл может быть введен в процессе синтеза гексаванадата из метаванадата аммония. Применение в качестве продукта-заместителя вольфрама также преимущественно, так как вольфрамат аммония очень хорошо растворим в воде. В том случае, когда необходимо ввести вольфрам в уже синтезированный гексаванадат аммония, вольфрамат аммония может быть легко помещен в раствор в воде с гексаванадатом аммония при минимальном увлажнении 20 мас.% для получения гомогенной грунтовой (основной) пасты. Химическое замещение или легирование проводят посредством пиролиза смеси вольфрамата аммония и гексаванадатных предшественников в соответствии со следующей реакцией восстановления и замещения (1-x)(NH4)2V6O16+x/2(NH4)2 H2W12O40, yH2O--->6(V1-xWx)O2 +nN2+mH2O
Выбор значения x для гомогенного результата является точным стехиометрическим вычислением, которое позволяет получить необходимое температурное изменение, что касается температуры перехода 68oC диоксида ванадия, можно отметить для этого, что градиент



1: Синтез нелигированного диоксида ванадия
1. Получение предшественника гексаванадата аммония (ГВА)
20 г метаванадата аммония (МВА) (Aldrich Ref. 20,555 9, чистота: 99%, M: 116,78) вводят в стакан объемом 250 мл. Стакан помещают на нагревающую пластину. Добавляют несколько капель воды при перемешивании так, чтобы получить жидкую пасту для инициирования растворения МВА. Стакан нагревают до 55oC

а. Предварительная дегазация ГВА:
2 г ГВА осаждают в алюминиевой корзине в зоне А (T= 200oC) печи. Первую перекачку под вакуумом проводят в течение 15 мин. b. Термическое разложение ГВА и образование VO2. Затем корзину помещают непостредственно во вторую зону (B) печи, где температура составляет 600

Охлаждение в зоне С печи до температуры 120oC проводят в атмосфере, образующейся в результате разложения, со скоростью приблизительно 200oC/мин. Масса полученного голубовато-черного порошка (VO2): 1,6680

а. Предварительная дегазация ГВА:
2 г ГВА (Treibacher (Austria), Ref. Trocken ГВА 99%) осаждают в алюминиевой корзине в печи в зоне А (T=200oC). Первую откачку под вакуумом проводят в течение 15 мин. b. Термическое разложение ГВА и образование VO2. Затем корзину помещают непосредственно во вторую зону (В) печи, где температура составляет 600

Образец оставляют на 14 ч при температуре 600

Охлаждение проводят до температуры 120oC в атмосфере, образующейся в результате разложения, со скоростью приблизительно 200oC/мин. Масса полученного голубовато-черного порошка (VO2): 1,6689

Используют полученный промышленным способом ГВА (Treibacher (Austria), Ref. ГВА Trocken 99%). а и b. Дегазацию и термическое разложение ГВА проводят, как показано в Примере 2. c. Прокаливание диоксида ванадия:
Образец вынимают и затем возвращают в реактор в зону А (T = 200oC). Затем сначала его помещают под вакуум на 15 мин. После этого образец помещают в зону B печи при температуре 800oC на пять часов. d. Охлаждение и выход из печи:
Охлаждение в зоне С печи до 120oC проводят в атмосфере, образующейся в результате разложения, со скоростью приблизительно 200oC/мин. Масса полученного голубовато-черного порошка (VO2):
1,6682

1. Получение предшественника ГВА с легирующим агентом:
Предшественник ГВА получают по методике, описанной в примере 1, но добавляя 0,459 вольфрамата аммония (Aldrich Ref. 32,238.5, чистота 99%, М= 265,88) перед добавлением 1N соляной кислоты. Масса полученного продукта составляет 19,424 г (включая хлорид аммония). Продукт характеризуется диаграммой дифракции рентгеновских лучей и FTIR: кроме полос, обусловленных ГВА, присутствуют очень слабые полосы, обусловленные наличием вольфрамата. II. Пиролиз предшественника
а. Предварительная дегазация легированного ГВА. 2,000 г легированного ГВА, полученного описанным выше способом, осаждают в алюминиевой корзине в печи в зоне А (200oC). Первая откачка под вакуумом производится в течение 15 мин. b. Термическое разложение легированного ГВА и образование VO2, легированного вольфрамом. Корзину после этого помещают непосредственно во вторую зону (В) печи, где температура составляет 600


1. Введение легирующего агента
20 г ГBA вносят в мельницу в 25 мл воды для того, чтобы получить вязкую пасту. Пасту затем подвергают первому измельчению, цель которого гомогенизировать дисперсию ГВА в водной среде. Вольфрамат аммония представляет собой белый порошок, растворимый в воде. 0,539 г этого порошка добавляют к измельчающейся пасте и дисперсию продолжают в течение нескольких минут. Полученную таким образом смесь сушат под вакуумом или в печи при температуре 200oC. II. Пиролиз легированного предшественника ГВА
Пиролиз проводят при условиях, подробно описанных в Примере 2, выполняя прокаливание при температуре 800oC в течение 5 ч. Масса полученного голубовато-черного порошка (VO2) : 1,670

1. Введение легирующего агента
Проводят по методике примера 5 из 20 г ГВА (Treibacher, Aistria, Ref. ГВА, Troken 99%). Масса введенного вольфрамата аммония составляет 1,089 г. II. Пиролиз легированного предшественника ГВА
Пиролиз проводят в условиях, описанных выше в Примере 5. Масса полученного голубовато-черного порошка (VO2) : 1,671

Получают сухие пленки, которые содержат VO2, легированный или нет, 1% вольфрама (V1-xM2O2, где x=0,01 и M=W) (фаза растворителя), следующим образом. 1) Получение лака
Эмпирическая формула лака (см. табл. 3 в конце описания). Solvantar S:340 и Уайт спирит 17% взвешивают и помещают в стакан, затем при перемешивании добавляют Rlexigum P 675, после чего смесь оставляют перемешиваться до получения полной гомогенизации. 2) Введение VO2. 100 г лака взвешивают и помещают в стакан. 1 г VO2 (легированного или нелигированного) добавляют при перемешивании. Перемешивание продолжают со скоростью 1500 об/мин в течение по меньшей мере 15 мин до получения полной гомогенизации. Измельчение проводят с помощью мельницы со стеклянными микросферами. 3) Применение. Полученное таким образом покрытие наносят на стеклянную пластину с помощью ручного аппликатора, который позволяет осаждение толщиной 50 мкм во влажном состоянии. Сушку проводят при комнатной температуре. Такие пленки характеризуют посредством следующих методов:
-FTIR- спектроскопия (инфракрасная спектроскопия с Фурье-преобразованием,
- оптические измерения с помощью светодозирования (измерения светового потока). 4) Результаты
a. Исследование превращения методом FTIR-спектроскопии. Свободные пленки получают нанесением на стекло, сушкой и отделением от подложки. Свободные пленки исследуются при помощи FTIR на пропускание и на определение ослабленного полного отражения (ATR). Переход "изолирующий-металл" диоксида ясно демонстрируется в процессе нагревания и охлаждения путем исчезновения и повторного появления абсорбционных линий благодаря VO2 при Tt= 66


- с другой стороны, проводить точное измерение толщины. c. Оптическое измерение с помощью светодозирования. Устройство, показанное на фиг. 9, для измерения солнечного потока было разработано специально для демонстрации термохромного превращения пленок в ближней полосе ИК-спектра. Принцип действия был изложен в публикации в международном обзоре (J.C. Valmalette et al. Solar Energy Materials, 1994). Искусственный источник света (11) состоит из галогеновой лампы мощностью 50 Вт, максимальное излучение которой центрируют на 1 мкм. Образцы представляют собой сложные пленки или покрытия (13) диаметром 58 мм, осажденные на стеклянную подложку (16) и размещенные напротив источника (11) и детектора (10), который измеряет световой поток с длиной волны от 0,3 до 2,8 мкм. Мультиметер (15) показывает величину напряжения, производимого детектором (10). Каждый образец может быть нагрет или охлажден воздушным потоком (12), и температуру пленки измеряют с помощью термопары, соединенной с термометром (14). Результаты эксперимента позволяют получить три оптические шкалы, непосредственно связанные со способом изготовления пленки и качеством перехода. Исследование каждой из пленок включает
- непосредственное измерение излучения источника (без образца),
- стандартизацию от полупрозрачной пленки, которая включает нетермохромный черный пигмент, при помощи низкотемпературного и высокотемпературного измерения,
- измерение на одной стеклянной пластине I",
- измерение холодной пленки (T<T):Icold",
- измерение горячей пленки (T>Tt):Ihot. С помощью вычисления получают три шкалы (в области солнечного спектра детектора):
- непрозрачность
- относительная эффективность (1-(Ihot/Icold), выраженная в %,
- абсолютную эффективность (Ihot-Icold) в стандартных единицах: W м-2. Получены следующие результаты (величины потока, пропущенного в холодной пленке, выражены как функция случайного излучения 1,000W м-2). Сухая пленка толщиной 10 мкм, которая содержит массовую фракцию нелегированного VO2, равную M.F. = 0,01. - непрозрачность = 34

- Поток, прошедший в холодной пленке (T<T=66oC)=662W м-2. - Поток, прошедший в горячей пленке (T>Tt=66oC)=606W м-2. - Относительная эффективность = 8,5%. - Усиление абсолютной эффективности = 56W м-2. Сухая пленка толщиной 10 мкм, которая содержит массовую фракцию нелегированного VO2, равную M.F. = 0,025. - непрозрачность = 40

- Поток, прошедший в холодной пленке (T<T=66oC)=631W м-2. - Поток, прошедший в горячей пленке (T>Tt=66oC)=527W м-2. - Относительная эффективность = 16,5%
- Усиление абсолютной эффективности = 104W м-2. Сухая пленка толщиной 10 мкм, которая содержит массовую фракцию нелегированного VO2, равную M.F. = 0,05. - непрозрачность = 63%
- Поток, прошедший в холодной пленке (T<T=66oC)=270W м-2. - Поток, прошедший в горячей пленке (T>Tt=66oC)=186W м-2. - Относительная эффективность = 31,1%
- Усилие абсолютной эффективности = 84W м-2. Сухая пленка толщиной 10 мкм, которая содержит массовую фракцию легированного 1% вольфрама VO2, равную M.F. 0,005


- Поток, прошедший в холодной пленке (T<T=66oC)=708W м-2. - Поток, прошедший в горячей пленке (T>Tt=66oC)=635W м-2. - Относительная эффективность = 31,1%
- Усиление абсолютной эффективности = 73 W м-2. Эти результаты показывают, что объем фракции пигмента имеет прямое влияние на
- термическое усиление в процессе его превращения,
- непрозрачность лакового листа. ПРИМЕР 8: Изучение размера частицы
Это изучение проводят подсчетом на электронном микроскопе в некоторых образцах пленок, изготовленных с нелегированным VO2, полученным в соответствии с Примерами 1 и 2. Пленки получены в соответствии со способом Примера 7. Результаты приведены в табл. 4 и 5 (см. в конце описания).