автономный термохолодильный блок

Классы МПК:F25B29/00 Комбинированные нагревательные и охладительные системы, например работающие одновременно или попеременно
F25B9/14 отличающиеся используемым циклом, например циклом Стирлинга
Автор(ы):,
Патентообладатель(и):Военный инженерно-космический университет им. А.Ф. Можайского
Приоритеты:
подача заявки:
1999-05-19
публикация патента:

Изобретение относится к теплоэнергетике кондиционирования воздуха, холодоснабжения и газовых регенеративных машин, работающих по обратному циклу Стирлинга. Изобретение позволит повысить КПД. теплового насоса и установки в целом. Для охлаждения холодильной машины, приводимой в работу электродвигателем, предусмотрена система охлаждения, соединяющая холодильник холодильной машины с теплообменником нагрузки теплового насоса. За счет подвода внешней энергии от электродвигателя происходит передача теплоты охлаждающей жидкости системы охлаждения теплоносителю системы внешнего теплоснабжения, протекающему через холодильник теплового насоса, с повышением его температуры. В промежуточной емкости температура охлаждающей жидкости выравнивается до температуры окружающей среды за счет теплообмена с окружающей средой. Для этой цели промежуточная емкость выполнена с оребренными внутренними и внешними поверхностями, перфорированными верхней крышкой и разбрызгивающей форсункой. Из емкости с помощью насоса охлаждающая жидкость вновь подается в холодильник для охлаждения холодильной машины. 1 ил.
Рисунок 1

Формула изобретения

Автономный термохолодильный блок, содержащий холодильную машину и систему ее охлаждения, отличающийся тем, что холодильная машина выполнена в виде машины Стирлинга с приводом, работающей по обратному циклу, при этом блок снабжен работающим по обратному циклу Стирлинга тепловым насосом с приводом и системой охлаждения, проходящей через холодильник холодильной машины и теплообменник нагрузки теплового насоса и включающей промежуточную емкость, выполненную с внутренним и внешним оребрением поверхности, перфорированной верхней крышкой и разбрызгивающей форсункой в газообразной части емкости, и циркуляционный насос, обеспечивающий движение охлаждающей жидкости из холодильника холодильной машины в теплообменник нагрузки теплового насоса, затем в промежуточную емкость и из нее вновь в холодильник, холодильной машины, причем привод холодильной машины и привод теплового насоса выполнены в виде разных электродвигателей.

Описание изобретения к патенту

Изобретение относится к области теплоэнергетики, кондиционирования воздуха, холодоснабжения и газовых регенеративных машин, работающих по обратному циклу Стирлинга, предназначено в качестве автономных термохолодильных установок для стационарных и передвижных объектов при одновременном производстве холода и тепла.

Известны децентрализованные системы теплоснабжения с тепловыми насосами, работающими по обратному циклу Стирлинга, отличающиеся наиболее высокой эффективностью и экологической чистотой, так как в качестве рабочего тела теплового насоса используются озононеразрушающие вещества - гелий, водород, воздух и т.д. (Кириллов Н.Г., Сударь Ю.М. и др. Децентрализованные системы теплоснабжения с тепловыми насосами, работающими по обратному циклу Стирлинга. /Информационный бюллетень: "Теплоэнергетические технологии"/, N 1, СПб. , 1997, стр. 38-40). Однако, для уменьшения подводимой электрической энергии для привода теплового насоса желательно использовать в качестве источника низкопотенциальной теплоты рабочую среду с максимально высокой температурой.

Известно устройство машины, работающей по обратному циклу Стирлинга, содержащей полости сжатия и расширения, картер, регенератор, теплообменник нагрузки, холодильник, вытеснитель, рабочий поршень с уплотнением штока вытеснителя, привод (Патент России N 2079069, Бюл. N 13 от 10.05.97).

Известны традиционные схемы систем рефрижерации автономных объектов, включающие в себя парокомпрессионную холодильную машину, систему охлаждения холодильной машины. Для охлаждения холодильных машин в конденсатор подается внешняя среда, в качестве которой может применяться воздух окружающей среды, вода из системы оборотного водоснабжения, охлажденная в градирне, или, например, забортная вода (Захаров Ю.В. Судовые установки кондиционирования воздуха и холодильные машины. Л. , "Судостроение", 1979, стр. 20). Однако, в данных случаях происходит безвозвратная потеря низкопотенциальной теплоты и ее рассеивание в окружающую среду, а использование парокомпрессионных холодильных машин приводит к разрушению озонового слоя атмосферы.

Технический результат, который может быть получен при осуществлении изобретения, заключается в повышении КПД теплового насоса и установки в целом, одновременном получении холода и высокопотенциального тепла, а также снижении негативного воздействия на окружающую среду.

Для достижения этого технического результата автономный термохолодильный блок, включающий в себя холодильную машину, выполненную в виде машины Стирлинга с приводом, работающей по обратному циклу, и систему охлаждения холодильной машины, снабжен работающим по обратному циклу Стирлинга тепловым насосом с приводом и системой охлаждения холодильной машины, проходящей через холодильник холодильной машины и теплообменник нагрузки теплового насоса и включающей промежуточную емкость, выполненную с внутренним и внешним оребрением поверхности, перфорированной верхней крышкой и разбрызгивающей форсункой в газообразной части емкости, и циркуляционный насос, обеспечивающий движение охлаждающей жидкости холодильной машины из холодильника холодильной машины в теплообменник нагрузки теплового насоса, затем в промежуточную емкость и из нее вновь в холодильник холодильной машины, причем привод холодильной машины и привод теплового насоса выполнены в виде разных электродвигателей.

Введение в состав автономного термохолодильного блока холодильной машины Стирлинга и теплового насоса Стирлинга, связанного с холодильной машиной через систему охлаждения холодильной машины, содержащей промежуточную емкость с оребренными внутренними и внешними поверхностями, перфорированной верхней крышкой и разбрызгивающей форсункой в газообразной части емкости, позволяет получить новое свойство, заключающееся в использовании низкопотенциального тепла охлаждающей жидкости холодильной машины для повышения КПД (коэффициента теплопреобразования) теплового насоса, выраженного в снижении потребляемой электрической мощности, и выработке высокотемпературной тепловой энергии, а также использование окружающей среды для охлаждения охлаждающей жидкости после теплового насоса до температуры окружающей среды за счет особенности устройства промежуточной емкости, при этом применение холодильной машины и теплового насоса, работающих по обратному циклу Стирлинга, с озононеразрушающим рабочим телом снижает негативное влияние на окружающую среду.

На чертеже изображен автономный термохолодильный блок.

Автономный термохолодильный блок включает в себя холодильную машину Стирлинга 1 с теплообменником нагрузки 2, холодильником 3 и электродвигателем 4, тепловой насос Стирлинга 5 с теплообменником нагрузки 7, холодильником 6 и электродвигателем 8, системы охлаждения 9 холодильной машины 1, проходящей через холодильник 3 и теплообменник нагрузки 7, и включающую в себя промежуточную емкость с оребренными внутренними и внешними поверхностями 11, перфорированной верхней крышкой 12 и разбрызгивающей форсункой 13 в газообразной части емкости 10, а также циркуляционный насос 14. Теплообменник нагрузки 2 холодильной машины 1 и холодильник 6 теплового насоса 5 связан с внешними системами холодо- и теплоснабжения соответственно магистралями 16 и 15.

Автономный термохолодильный блок работает следующим образом.

Для охлаждения холодильной машины 1, приводимой в работу электродвигателем 4, предусмотрена система охлаждения 9, по которой, приняв теплоту от рабочего тела холодильной машины 1 в холодильнике 3, охлаждающая жидкость поступает в теплообменник нагрузки 7 теплового насоса 5. За счет подвода внешней энергии от электродвигателя 8 происходит передача теплоты охлаждающей жидкости системы охлаждения 9 теплоносителю системы внешнего теплоснабжения, протекающему через холодильник 6 теплового насоса 5 по магистрали 15, с повышением его температуры. Отдав значительную часть своей теплоты рабочему телу теплового насоса 5, охлаждающая жидкость поступает в промежуточную емкость 10, где ее температура выравнивается до температуры окружающей среды за счет теплообмена с окружающей средой. Для этой цели промежуточная емкость выполнена с оребренными внутренними и внешними поверхностями 11, обеспечивающими увеличение теплопередающей поверхности, а сама жидкость подается в емкость 10 через разбрызгивающую форсунку 13, обеспечивая испарительный эффект, для чего верхняя крышка 12 емкости 10 выполнена перфорированной. Из емкости 10 с помощью насоса 14 охлаждающая жидкость вновь подается в холодильник 3 для охлаждения холодильной машины 1. От холодильной машины 1 через холодильник 2, холод отводится во внешнюю систему холодоснабжения с помощью магистрали 16.

Иисточники информации, принятые во внимание при составлении заявки:

1. Кириллов Н.Г., Сударь Ю.М. и др. Децентрализованные системы теплоснабжения с тепловыми насосами, работающими по обратному циклу Стирлинга /Информационный бюллетень: "Теплоэнергетические технологии"/. N 1, С.-Пб., 1997, стр. 38-40.

2. Патент России N 2079069. Бюл. N 13 от 10.05.97 года.

3. Захаров Ю.В. Судовые установки кондиционирования воздуха и холодильные машины. Л., "Судостроение", 1979, стр. 20 - прототип.

Класс F25B29/00 Комбинированные нагревательные и охладительные системы, например работающие одновременно или попеременно

теплогенерирующий электромеханический преобразователь -  патент 2525234 (10.08.2014)
способ преобразования тепла в холод (варианты) устройство для его осуществления (варианты) и система преобразования тепла в холод -  патент 2511333 (10.04.2014)
водоочиститель -  патент 2510637 (10.04.2014)
устройство и способ воздушного отопления воздушного охлаждения и вентиляции помещений -  патент 2490560 (20.08.2013)
универсальная комплексная энергосистема -  патент 2489589 (10.08.2013)
тригенерационная установка на базе микротурбинного двигателя -  патент 2487305 (10.07.2013)
способ теплохладоснабжения -  патент 2485419 (20.06.2013)
криохирургический аппарат -  патент 2483691 (10.06.2013)
способ и устройство для переноса тепла от первой среды ко второй -  патент 2476801 (27.02.2013)
система теплохладоснабжения -  патент 2460949 (10.09.2012)

Класс F25B9/14 отличающиеся используемым циклом, например циклом Стирлинга

теплообменник с горизонтальным оребрением для криогенного охлаждения с повторной конденсацией -  патент 2505760 (27.01.2014)
криомедицинский аппарат -  патент 2488364 (27.07.2013)
холодильная установка с оппозитной тепловой машиной стирлинга -  патент 2464504 (20.10.2012)
способ выработки механической (электрической) энергии при помощи двигателя стирлинга, использующего для своей работы тепло вторичных энергетических ресурсов, геотермальных источников и солнечную энергию -  патент 2406853 (20.12.2010)
способ криостатирования объекта и устройство для его осуществления -  патент 2406044 (10.12.2010)
устройство для получения холода -  патент 2320941 (27.03.2008)
способ изготовления криогенного охладителя и криогенный охладитель, изготовленный этим способом -  патент 2320940 (27.03.2008)
нанокриогенная система, работающая по циклу стирлинга -  патент 2285871 (20.10.2006)
тепловой насос -  патент 2259517 (27.08.2005)
энергохолодильная система "стирлинг-стирлинг" для мобильных комплексов -  патент 2259516 (27.08.2005)
Наверх