магнезиальная масса для футеровки металлургических агрегатов

Классы МПК:C04B35/043 огнеупоры из зернистых смесей
Автор(ы):, , ,
Патентообладатель(и):"Б.М.Б.-С.Д.Трейдинг Корпорейшн Лимитед" (GB)
Приоритеты:
подача заявки:
1999-09-01
публикация патента:

Изобретение относится к огнеупорной промышленности и может быть использовано для ремонта и футеровки металлургических агрегатов, в том числе промежуточных ковшей. Магнезиальная масса, включающая периклазсодержащий заполнитель и связующее, содержит в качестве связующего полифосфат натрия и метасиликат натрия и/или сульфат магния, бентонит, двуокись кремния и неорганическое волокно при следующем соотношении компонентов, мас.%: периклазсодержащий заполнитель фракции 1-0,063 мм 57-75, фракции < 0,063 мм 17-31, полифосфат натрия 0,2-0,8, метасиликат натрия и/или сульфат магния 1,7-3,5, бентонит фракции 0,5-0 мм 1,7-3,5, двуокись кремния фракции < 0,01 мм 1,5-3,4, неорганическое волокно 0,5-1,3. Изобретение обеспечивает стабилизацию линейных размеров и прочностных характеристик массы в процессе разогрева, а также увеличение адгезии массы к поверхности футеровки. 2 табл.
Рисунок 1, Рисунок 2

Формула изобретения

Магнезиальная масса для футеровки металлургических агрегатов, включающая периклазсодержащий заполнитель, связующее - полифосфат натрия и метасиликат натрия и/или сульфат магния, бентонит и неорганическое волокно, отличающаяся тем, что она дополнительно содержит двуокись кремния фракции менее 0,01 мм при следующем соотношении компонентов, мас.%:

Периклазсодержащий заполнитель

фракции 1 - 0,063 мм - 57 - 75

фракции менее 0,063 мм - 17 - 31

Полифосфат натрия - 0,2 - 0,8

Метасиликат натрия и/или сульфат магния - 1,7 - 4,8

Бентонит фракции 0,5 - 0 мм - 1,7 - 3,5

Двуокись кремния фракции менее 0,01 мм - 1,5 - 3,4

Неорганическое волокно - 0,5 - 1,3

Описание изобретения к патенту

Изобретение относится к огнеупорной промышленности, а именно к составам огнеупорных масс для ремонта и футеровки металлургических агрегатов, в том числе промежуточных ковшей.

Известна огнеупорная масса на основе периклаза, используемая в качестве обмазки металлургических агрегатов, содержащая, мас.%: периклаз фракции менее 0,075 мм (с Fe2O3 - 1-3%, водопоглощением менее 4%) - 77,5, порошок бентонита 3,5; порошок метасиликата натрия Na2SiO35H2O - 19 (Патент Великобритании N 1272845, C 04 B 19/04, B 22 C 3/00, 1972). Основным недостатком указанных масс является довольно высокое изменение линейных размеров в процессе термообработки и низкие прочностные характеристики.

Известна огнеупорная масса состава, мас.%:

Магнезиальный заполнитель фракции < 0,008 мм - 25 - 40

Магнезиальный заполнитель фракции 1,5-0,5 мм - Основа

Связующее (цемент глиноземистый, фосфатное связующее, метасиликат натрия) - 5 - 20

Древесная мука фракции < 0,2 мм - 1 - 5

(А.с. СССР N 1616881, C 04 B 35/68, 35, 1989 г.).

Однако данная масса также имеет большую усадку в процессе термообработки и невысокие прочностные характеристики.

Прототипом является огнеупорная масса, преимущественно для промежуточных ковшей, включающая заполнитель из группы магнезиальных, магнезиально-хромитовых или форстеритовых огнеупорных материалов в количестве 75-95 мас.%, 3-12% перлита, 0,5-5% связки и 0,1-5% пластификатора (заявка EP N 0047728 A1, C 04 B 35/66, 17.03.82). В качестве связующего могут быть использованы полифосфат натрия, силикат натрия, сульфат магния и другие неорганические связующие. В качестве пластификатора может быть использован бетонит. От 0,5 до 10 мас.% огнеупорного заполнителя может быть заменено неорганическим волокном, в частности стекло- или минеральным волокном.

Однако прочностные характеристики этой массы при температуре 110oC и выше не удовлетворяют условиям эксплуатации металлургических агрегатов, способствуют преждевременному выходу упомянутых агрегатов из строя.

Задачей, на решение которой направлено изобретение, является стабилизация линейных размеров и прочностных характеристик массы в процессе разогрева.

Поставленная задача решается за счет того, что магнезиальная масса для футеровки металлургических агрегатов, включающая периклазсодержащий заполнитель, связующее-полифосфат натрия и метасиликат натрия и/или сульфат магния, бентонит и неорганическое волокно, дополнительно содержит двуокись кремния фракции < 0,01 при следующем соотношении компонентов, мас.%:

Периклазсодержащий заполнитель фракции 1-0,063 мм - 57 - 75

фракции < 0,063 мм - 17 - 31

Полифосфат натрия - 0,2 - 0,8

Метасиликат натрия и/или сульфат магния - 1,7 - 4,8

Бентонит фракции 0,5-0 мм - 1,7 - 3,5

Двуокись кремния фракции < 0,01 мм - 1,5 - 3,4

Неорганическое волокно - 0,5 - 1,3

Введение в торкрет-массу предлагаемого количества огнеупорного периклазсодержащего заполнителя обеспечивает требуемую огнеупорность.

Введенное в торкрет-массу связующее обеспечивает прилипание массы к покрываемой поверхности. В качестве связующего использования полифосфат натрия и метасиликат натрия и/или сульфат магния.

Сульфат магния вводят для того, чтобы снизить содержание щелочи в массе, так как повышенное содержание щелочи приводит к нежелательным последствиям в процессе службы массы. В то же время содержание сульфата магния в массе не должно превышать 5%, так как большее количество на свойства массы влияние не оказывает, а в некоторых случаях даже ухудшает их.

Если в массе в качестве связующего использовать только сульфат магния, то можно стабилизировать изменение линейных размеров в температурном интервале от 110 до 1400oC, но при этом прочностные характеристики уменьшаются.

Совместное введение полифосфата натрия, метасиликата натрия и сульфата магния позволяет стабилизировать такие характеристики, как изменение линейных размеров в интервале температур от 110 до 1400oC и прочности в интервале температур от 20 до 1400oC.

Бетонит является пластификатором и замедлителем схватывания.

Введение в массу двуокиси кремния позволяет скомпенсировать усадку в процессе термообработки, а в некоторых случаях наблюдается даже небольшой рост линейных размеров массы, что хорошо сказывается на эксплуатационных характеристиках массы.

Неорганическое волокно - базальтовое или каолиновое, введенное в массу, создает армирующий каркас и позволяет уменьшить усадку или рост образцов, тем самым создавая стабилизирующий эффект.

Пример

В качестве исходных компонентов использовали периклаз спеченный, содержащий MgO не менее 91%; периклазохромит, содержащего MgO не менее 55%, Cr2O3 15-25%; обожженный дунит, с содержанием MgO не менее 46% фракции 1-0 мм, метасиликат натрия фракцией менее 0,1 мм, молотый бентонит фракции 0,5-0 мм, сульфат магния MgSO4 магнезиальная масса для футеровки металлургических агрегатов, патент № 2159219 7H2O фракции менее 1 мм, двуокись кремния тонкодисперсная фирмы "Elkem", полифосфат натрия фракции 0,1-0 мм, неорганическое волокно (базальтовое и каолиновое) длиной 10-12 мм. Все компоненты массы промышленного изготовления.

Для изготовления образцов все исходные компоненты смешивали в скоростном смесителе в течение 2-3 мин. В готовую массу добавляли воду (15-20% сверх 100% компонентов массы), перемешивали в течение минуты. Влажность массы составляла до 20%.

Кажущуюся плотность и открытую пористость определяли согласно ГОСТ 2409-80, в качестве насыщающей жидкости использовали керосин плотностью 0,8 г/см3.

Предел прочности при сжатии определяли согласно ГОСТ 4071.2-94 на кубиках размером 50 х 50 х 50 мм.

Изменение линейных размеров определяли измерением параметров кубика до и после термообработки по формуле:

магнезиальная масса для футеровки металлургических агрегатов, патент № 2159219l = (l0-l1)/l0,

где l0 - размер образца до термообработки;

l - размер образца после термообработки.

Для определения кажущейся плотности и открытой пористости, предела прочности при сжатии и определения изменений линейных размеров образцы подготавливали следующим образом: в стальные формы массы укладывали набивкой и 24 ч держали на воздухе.

Через сутки снимали опалубку и измеряли линейные размеры, и ставили сушить при температуре 110oC на 24 ч. После этого треть образцов обжигалась при температуре 1100oC с выдержкой 3 ч и треть при 1380oC с выдержкой 2 ч.

Составы испытанных масс и массы-прототипа приведены в табл. 1, результаты их испытаний - в табл. 2.

Как видно из таблиц, результаты исследований показывают, что разработанная масса по сравнению с прототипом обладает меньшим изменением линейных размеров в интервале температур от 110 до 1400oC и в этом же интервале температур удалось стабилизировать прочностные характеристики.

Класс C04B35/043 огнеупоры из зернистых смесей

огнеупорное керамическое изделие и относящееся к нему формованное изделие -  патент 2467982 (27.11.2012)
грубокерамический огнеупор и огнеупорное изделие из него -  патент 2412132 (20.02.2011)
способ изготовления периклазошпинельной огнеупорной массы для производства изделий -  патент 2383512 (10.03.2010)
шихта для изготовления периклазошпинельных изделий -  патент 2376262 (20.12.2009)
магнезиальная масса для футеровки металлургических агрегатов -  патент 2292321 (27.01.2007)
огнеупорная торкрет-масса -  патент 2282603 (27.08.2006)
шпинельный огнеупор -  патент 2260573 (20.09.2005)
состав и способ образования массы карбонированных огнеупоров -  патент 2245863 (10.02.2005)
периклазошпинельные огнеупорные изделия и способ их изготовления -  патент 2235701 (10.09.2004)
огнеупорный мертель -  патент 2228310 (10.05.2004)
Наверх