устройство для нагрева обсадных труб скважин

Классы МПК:E21B36/04 с использованием электронагревателей
E21B37/00 Способы или устройства для очистки буровых скважин
E21B43/24 с применением тепла, например нагнетанием пара
Автор(ы):, , ,
Патентообладатель(и):Московский государственный инженерно-физический институт (технический университет)
Приоритеты:
подача заявки:
1999-02-02
публикация патента:

Изобретение относится к технике добычи вязких нефтей, содержащих асфальтосмолистые вещества, и предназначено для уменьшения фильтрационного сопротивления призабойной зоны пласта методом его тепловой обработки. Устройство приспособлено для нагрева обсадных труб скважин в месте его расположения. Катушка устройства питается высокочастотным током и выполнена в виде спиральной замедляющей системы, расположенной на керамическом кожухе, который перемещают вдоль обсадной трубы. Приведены относительные размеры длины, диаметра и шага намотки спиральной замедляющей системы, а также диаметра провода спирали. Частота питания превышает промышленную частоту 59 Гц в 200 - 2000 раз. Эффективность предложенного устройства не зависит от скорости потока нефти по обсадной трубе. Существенно увеличивается коэффициент полезного действия передачи энергии электропитания устройства обсадной трубе в месте расположения нагревателя. 1 ил.
Рисунок 1

Формула изобретения

Устройство для нагрева обсадных труб скважин, содержащее токоввод силового кабеля, кожух и катушку индуктивности, отличающееся тем, что катушка индуктивности выполнена в виде однозаходной спиральной замедляющей системы, закрепленной на поверхности трубчатого керамического кожуха, причем диаметр спирали на 10 - 20% меньше внутреннего диаметра обсадной трубы, ее длина составляет 5 - 10 диаметров трубы, шаг намотки спирали не превышает 0,1 диаметра трубы, а радиус провода спирали не менее глубины ее скин-слоя на частоте питания устройства, превышающей промышленную частоту в 200 - 2000 раз.

Описание изобретения к патенту

Изобретение относится к технике добычи вязких нефтей, содержащих асфальтосмолистые вещества, и предназначено для уменьшения фильтрационного сопротивления призабойной зоны пласта методом его тепловой обработки.

Известны спиральные термонагреватели, питаемые электрическим током и расположенные в обсадной трубе, которые передают тепловую энергию потоку жидкости, прокачиваемой по трубе (Крейт Ф., Блэк Ч. Основы теплопередачи. Пер с англ. под ред. Н.А. Анфимова. - М.: Мир, 1983). Существенным недостатком известного устройства является невозможность заметного нагрева трубы в месте расположения нагревателя.

Наиболее близким к предложенному устройству, принятым в качестве прототипа, является электроиндукционный нагреватель, опускаемый по обсадной трубе до призабойной зоны и содержащий стальной сердечник с размещенной на нем катушкой индуктивности, питаемой переменным током частотой 50 Гц, в котором сердечник нагревается индукционным током, а передача тепловой энергии обсадной трубе осуществляется через зазор между сердечником и трубой, который заполнен извлекаемой нефтью (Электронагреватель для обработки призабойной зоны пласта при эксплуатации скважин штанговыми насосами. Б.Е. Доброскок, В.М. Соколов, К.С. Фролов и др. Нефтепромысловое дело, N 9, 1981, с. 33-36). Недостатком указанного устройства является незначительный КПД передачи тепловой энергии обсадной трубе (не более 1% на метр длины), так как энергия в основном уносится прокачиваемой через зазор нефтью.

Технический результат, на достижение которого направлено заявляемое изобретение, заключается в существенном увеличении КПД передачи энергии электропитания устройства (в десятки раз) обсадной трубе в месте расположения нагревателя.

Сущность предлагаемого изобретения заключается в том, что в известном устройстве катушка индуктивности выполнена в виде однозаходной спиральной замедляющей системы, закрепленной на поверхности трубчатого керамического кожуха, причем диаметр спирали на 10-20% меньше внутреннего диаметра обсадной трубы, ее длина составляет 5-10 диаметров трубы, шаг намотки спирали составляет не более 0,1 диаметра трубы, а радиус провода спирали не менее глубины ее скин-слоя на частоте питания устройства, повышающего стандартную промышленную частоту в 200-2000 раз.

Электродинамический анализ характеристик спиральной замедляющей системы с цилиндрическим стальным экраном и оптимизация этих характеристик по максимальному КПД передачи ВЧ-энергии экрану, проведенные по известной методике (А. Н. Семенов. Техническая электродинамика. - М.: Связь, 1973), показали, что на частоте 10-100 кГц КПД преобразования мощности питания спирали достигает не менее 50%, если диаметр спирали d составляет 80-90% от диаметра трубы D, длина спирали 1 связана с диаметром трубы соотношением 5D устройство для нагрева обсадных труб скважин, патент № 2157883|устройство для нагрева обсадных труб скважин, патент № 2157883 10D, а шаг спирали hустройство для нагрева обсадных труб скважин, патент № 2157883 0,1D. При указанном соотношении размеров устройства достигается также приемлемое согласование спирали с коаксиальным кабелем по волновому сопротивлению. Активное сопротивление такой спирали много меньше ее индуктивного сопротивления, если радиус провода спирали превышает глубину его скин-слоя, указанную выше.

Частота ВЧ-питания устройства, выявленная аналитически, позволяет осуществить питание спирали от генератора, расположенного на земной поверхности, так как потери мощности в коаксиальном кабеле с диаметром центрального проводника устройство для нагрева обсадных труб скважин, патент № 2157883 10 мм и волновым сопротивлением 50-75 Ом составляют 0,21 дБ/км на частоте 10 кГц, что соответствует потерям 5% мощности питания на глубине пласта 1 км или 27% на глубине 5 км.

Анализ процесса теплопередачи от обсадной трубы диаметром устройство для нагрева обсадных труб скважин, патент № 2157883 10 см к окружающей среде показал, что при ожидаемом КПД преобразования для нагревания участка трубы длиной l устройство для нагрева обсадных труб скважин, патент № 2157883 1 м на 80-90oC мощность питания спирали составляет устройство для нагрева обсадных труб скважин, патент № 2157883 2 кВт, что существенно меньше по сравнению с известными устройствами.

Конструкция устройства показана на чертеже, и оно содержит керамическую трубку 1 с винтовым пазом для намотки спирали 2, присоединенной к коаксиальному кабелю питания 3, причем керамическая труба расположена соосно обсадной трубе 4. Геометрические размеры устройства обозначены: D - внутренний диаметр обсадной трубы, d - наружный диаметр спиральной замедляющей системы, 1 - длина спирали, a h - ее шаг.

Устройство работает следующим образом. Силовые линии высокочастотного магнитного потока через поперечное сечение спирали замыкаются в кольцевом зазоре между спиралью и обсадной трубой, проникая в трубу и провод спирали на глубину скин-слоя

устройство для нагрева обсадных труб скважин, патент № 2157883

где f - частота питания спирали,

устройство для нагрева обсадных труб скважин, патент № 21578830 = 1.256устройство для нагрева обсадных труб скважин, патент № 215788310-6 Гн/м,

устройство для нагрева обсадных труб скважин, патент № 2157883 и устройство для нагрева обсадных труб скважин, патент № 2157883 - относительная магнитная постоянная материала трубы и его проводимость соответственно.

Глубина скин-слоя на частоте f = 10 кГц составляет устройство для нагрева обсадных труб скважин, патент № 2157883 0.01 мм для стали с устройство для нагрева обсадных труб скважин, патент № 2157883 = 5устройство для нагрева обсадных труб скважин, патент № 2157883103 и 0.2 мм для меди. Наведенный в трубе круговой поверхностный электрический ток, равный напряженности магнитного поля, касательного внутренней поверхности трубы, вызывает нагревание трубы за счет омических потерь. КПД преобразования магнитной энергии спирали в тепловую энергию трубы зависит от геометрических размеров катушки, шага ее намотки и согласования волнового сопротивления кабеля питания с индуктивным сопротивлением спирали.

Таким образом, предложенное устройство обеспечивает, по сравнению с прототипом, существенно больший КПД передачи энергии электропитания обсадной трубе в месте расположения спирали, особенно при значительных скоростях движения жидкости в обсадной трубе.

Класс E21B36/04 с использованием электронагревателей

устройство для тепловой обработки газогидратных залежей -  патент 2516303 (20.05.2014)
способ электронагрева нефтескважины нефтедобывающего комплекса и устройство для его реализации -  патент 2514332 (27.04.2014)
лубрикатор геофизический с защитой от гидратообразования -  патент 2509871 (20.03.2014)
устройство теплообменника для удаления парафина и смол из нефти перед ее транспортировкой -  патент 2501936 (20.12.2013)
система, способ и устройство создания тлеющего электрического разряда -  патент 2481463 (10.05.2013)
способ и устройство для добычи в естественном залегании битумов или особо тяжелой нефти -  патент 2465441 (27.10.2012)
способ термической обработки in situ с использованием нагревательной системы с замкнутым контуром -  патент 2460871 (10.09.2012)
способ нагрева потока жидкости в нефтегазовой скважине и установка для его осуществления -  патент 2455461 (10.07.2012)
устройство тепловой обработки призабойной зоны скважин - электропарогенератор -  патент 2451158 (20.05.2012)
способ нагрева нагнетательной жидкости в стволе скважины для вытеснения нефти из пласта -  патент 2450121 (10.05.2012)

Класс E21B37/00 Способы или устройства для очистки буровых скважин

Класс E21B43/24 с применением тепла, например нагнетанием пара

системы для обработки подземного пласта с циркулируемой теплопереносящей текучей средой -  патент 2529537 (27.09.2014)
способ термошахтной разработки месторождения высоковязкой нефти по одногоризонтной системе -  патент 2529039 (27.09.2014)
способ добычи газа из газовых гидратов -  патент 2528806 (20.09.2014)
способ разработки изометрических залежей природного битума -  патент 2528760 (20.09.2014)
способ разработки участка нефтяного месторождения -  патент 2528310 (10.09.2014)
способ разработки месторождения сверхвязкой нефти -  патент 2527984 (10.09.2014)
способ (варианты) и система регулирования эксплуатационной температуры в стволе скважины -  патент 2527972 (10.09.2014)
способ разработки залежей высоковязких нефтей или битумов при тепловом воздействии -  патент 2527051 (27.08.2014)
способ разработки залежи высоковязкой и тяжелой нефти с термическим воздействием -  патент 2526047 (20.08.2014)
устройство для разработки залежи сверхвязкой нефти -  патент 2525891 (20.08.2014)
Наверх