устройство для отбора кластеров из сверхзвукового потока

Классы МПК:G01N1/22 в газообразном состоянии 
Автор(ы):,
Патентообладатель(и):Институт прикладной механики Уральского отделения РАН
Приоритеты:
подача заявки:
1998-12-21
публикация патента:

Устройство для отбора кластеров может быть использовано при исследовании кластеров металлов или сплавов, получаемых в сверхзвуковом сопле плазмогазодинамической установки. Устройство для отбора кластеров содержит сопло и заборник кластеров с подложкой, имеющий V-образную форму со щелью на острие. Устройство снабжено уловителем заборника и механизмом подачи заборника. Сопло выполнено плоским. Уловитель заборника установлен на одной из боковых стенок сопла. Заборник с механизмом подачи установлен на противоположной стенке сопла, причем подложка установлена напротив острия заборника с зазором. Поверхности подложки выполнены параллельно боковым поверхностям заборника. Устройство позволяет проводить отбор кластеров металлов или других веществ из любой исследуемой зоны сверхзвукового сопла, т.е. там, где происходят процессы конденсации и зарождение кластеров без их распада и коагуляции. 3 ил.
Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

Устройство для отбора кластеров из сверхзвукового потока, содержащее сопло и заборник кластеров с подложкой, имеющий V-образную форму со щелью на острие, отличающееся тем, что оно снабжено уловителем заборника и механизмом подачи заборника, сопло выполнено плоским, уловитель заборника установлен на одной из боковых стенок сопла, а заборник с механизмом подачи установлен на противоположной стенке сопла, причем подложка установлена напротив острия заборника с зазором, а поверхности подложки выполнены параллельно боковым поверхностям заборника.

Описание изобретения к патенту

Изобретение относится к области исследования кластеров металлов или сплавов, получаемых в сверхзвуковом сопле плазмогазодинамической установки.

Известен способ отбора аэрозолей из струи ракетного двигателя, с помощью которого обеспечивают вакуумирование изолированного от анализируемой среды объема, отсос через капиллярную трубку аэрозоля и осаждение частиц на подложку. (RU N 93038339 A1, кл. G 01 N 1/22, 10.05.1996) [1].

Этот способ не обеспечивает стабильности кластеров металлов или сплавов, представляющих собой комплексы молекул, т.к. при отсосе через капиллярную трубку может происходить коагуляция молекул с образованием фрактальных структур и превращения их в ультрадисперсные частицы. Кроме того, установленная капиллярная трубка в сверхзвуковом потоке искажает газодинамическую картину течения с образованием скачков уплотнения, что влияет на процессы конденсации, а следовательно, и на процессы образования кластеров.

Из известных способов наиболее близким является методика отбора проб для определения дисперсности частиц металла, образовавшихся в сверхзвуковом потоке при расширении в сопле. Отбор осуществляется заборником, в котором поддерживается давление, равное давлению в струе исследуемого потока с частицами, попадающего в заборник. Отбор проб частиц металла осуществляется из сверхзвуковой струи на некотором расстоянии от среза сопла. (Ракетная техника и космонавтика, М.: Мир, 1972, том 10, N 8, с. 107 - 109) [2].

Недостатком этого способа отбора частиц является невозможность отбора частиц (кластеров) непосредственно из сверхзвуковой части сопла, т.е. из тех зон, где происходят процессы конденсации и образования кластеров.

Устройство [1] состоит из заборника частиц, который связан с анализируемой средой жаропрочной капиллярной трубкой и в котором установлена подложка, имеющая возможность двигаться.

Конструкция этого устройства не позволяет проводить отбор частиц (кластеров) непосредственно из зоны конденсации.

Известное устройство [2] содержит сопло, заборник частиц, установленный на некотором расстоянии по потоку от среза сопла, и в котором установлена подложка, имеющая возможность вращаться.

Это устройство также не позволяет отбирать частицы (кластеры) из сверхзвуковой части сопла.

Задача изобретения - возможность отбора кластеров из любой зоны сверхзвуковой части сопла при минимальном воздействии на кластеры, не приводящем к их распаду или коагуляции.

Поставленная задача решается тем, что в известном способе отбора кластеров из сверхзвукового потока заборником с подложкой, в котором поддерживается давление, равное давлению в потоке, отбор производят из любой зоны сверхзвуковой части сопла при поперечном перемещении заборника.

Поставленная задача решается также тем, что в известном устройстве, содержащем сопло, заборник кластеров с подложкой, сопло выполнено плоским, на одной из боковых стенок сопла установлен уловитель заборника, а заборник с механизмом подачи размещен на противоположной стенке сопла, причем заборник имеет V-образную форму со щелью на острие, напротив которой с зазором установлена подложка с поверхностями, параллельными боковым поверхностям заборника.

Способ основывается на применении плоского сверхзвукового течения, которое реализуется в плоском сопле с боковыми стенками, которые можно перемещать при настройке на исследуемую зону. Поскольку ширина проточной части сопла равна диаметру критического сечения сопла, то газодинамические параметры по ширине сопла в каждой точке практически не изменяются. Таким образом, кластеры, отбираемые из исследуемой зоны плоского сопла, будут иметь минимальный разброс по размерам. В то же время для того, чтобы кластеры не подвергались воздействию ударных волн и скачков уплотнения в момент их отбора из сверхзвукового потока, полость заборника выполнена с возможностью протекания газового потока. В этом случае обеспечивается равенство давлений в заборнике и исследуемой зоне газового потока.

На фиг. 1 и на разрезе фиг. 2 изображено устройство для отбора кластеров из сверхзвукового потока. На фиг. 3 показано сечение заборника кластеров. Устройство содержит сопло 1 с боковыми стенками 2 и 3, заборник 4 кластеров, в котором установлена подложка 5. На стенке 2 сопла смонтирован механизм 6 подачи заборника, а на стенке 3 сопла прикреплен уловитель 7 заборника. На фиг. 1 показан торец 8 заборника. Механизм подачи может быть выполнен пружинным или газовым.

Устройство работает следующим образом. До эксперимента производится настройка сопла. С этой целью боковые стенки сопла с прикрепленными к ним механизмом подачи и уловителем стягиваются винтами таким образом, чтобы положение точки входа заборника соответствовало исследуемой зоне газового потока. После включения газодинамической установки и установления сверхзвукового режима срабатывает электромагнит, который освобождает пружину (не показано) механизма подачи. Таким образом заборник "выстреливается" поперек сопла. Гашение скорости заборника 4 осуществляется уловителем 7, который выполнен в виде камеры, заполненной веществом, позволяющим "утилизировать" кластеры, осевшие на подложку в заборнике.

Описываемый способ и устройство для его осуществления позволяет проводить отбор кластеров металлов или других веществ из любой исследуемой зоны сверхзвукового сопла, т.е. там, где происходят процессы конденсации и зарождение кластеров без их распада и коагуляции. Кроме того, изменяя скорость перемещения заборника, можно отбирать различные по толщине покрытия на подложке, которая может быть выполнена на основе парафина. Утилизация кластеров представляет собой процесс длительного хранения нестабильных кластеров металлов или веществ, при котором каждый кластер обволакивается молекулами нейтрализующего вещества. Например, для кластеров Fe таким веществом является парафин.

Источники информации

1. Заявка РФ на изобретение N 93038339/05 от 27.07.93, G 01 N 1/22, БИ N 13 от 10.05.96.

2. Макбрайд, Шерман. Определение размеров частиц конденсата цинка при помощи методики дискретного отбора. Ракетная техника и космонавтика, том 10, N 8, 1972 (прототип).

Класс G01N1/22 в газообразном состоянии 

предварительный концентратор образцов -  патент 2526972 (27.08.2014)
аспиратор-пылепробоотборник -  патент 2516622 (20.05.2014)
переносное устройство для отбора проб природного газа -  патент 2504750 (20.01.2014)
способ выявления кислотного загрязнения приземного слоя атмосферы в зимний период и устройство для его осуществления -  патент 2502059 (20.12.2013)
лабораторный комплекс для отбора и газохроматографического анализа проб воздуха -  патент 2497097 (27.10.2013)
автоматизированная система контроля выхлопных газов технологических установок -  патент 2492444 (10.09.2013)
устройство для автоматического отбора проб -  патент 2488802 (27.07.2013)
пробоотборник для отбора сероводорода из расплава серы -  патент 2488089 (20.07.2013)
устройство для измерения дисперсности и объемной активности аэрозольной и газовой фракций радиоактивного рутения -  патент 2480730 (27.04.2013)
изокинетический зонд для анализа загрязнения газов, генерируемых авиационным двигателем -  патент 2478927 (10.04.2013)
Наверх