огнеупорная масса

Классы МПК:C04B35/66 монолитные огнеупоры или огнеупорные строительные растворы, в том числе содержащие или не содержащие глину 
C04B33/00 Изделия из глины
Автор(ы):
Патентообладатель(и):Институт машиноведения и металлургии ДВО РАН
Приоритеты:
подача заявки:
1998-03-02
публикация патента:

Изобретение может быть использовано в машиностроительной и металлургической отраслях народного хозяйства. Огнеупорная масса состоит, мас.%: глина 75 - 80; кварц-турмалиновый отход 20 - 25. Используют глину состава, мас.%: Al2O3 16,02, SiO2 62,62, CaO 0,48, FeO 0,42, Fe2O3 3,83, ППП 8,11, и кварц-турмалиновый отход состава, мас. %: Аl2О3 13,75, SiO2 61,15, Fe2O3 5,00, FeO 8,10, TiO2 0,68, CaO 1,20, MgO 3,30, Na2O 1,25, K2O 1,60, B2O3 1,90, ППП 2,02. Используемые в огнеупорной массе компоненты - глина и кварц-турмалиновый отход Комсомольского района - ранее для изготовления огнеупорных изделий не использовались. Огнеупорная масса имеет низкую стоимость, обусловленную доступность компонентов, снижает затраты на производство огнеупоров и повышает их эксплуатационные и физико-химические характеристики. 1 табл.
Рисунок 1

Формула изобретения

Огнеупорная масса, включающая огнеупорную глину и кварцсодержащий отход, отличающаяся тем, что содержит огнеупорную глину минералогического состава, мас.%:

Al2O3 - 16,02

SiO2 - 62,62

CaO - 0,48

FeO - 0,42

Fe2O3 - 3,83

ППП - 8,11

и кварц - турмалиновый отход минералогического состава, мас.%:

Al2O3 - 13,75

SiO2 - 61,15

Fe2O3 - 5,00

FeO - 8,10

TiO2 - - 0,68

CaO - 1,20

MgO - 3,30

Na2O - 1,25

K2O - 1,60

B2O3 - 1,90

ППП - 2,02

при следующем соотношении компонентов, мас.%:

Глина огнеупорная - 75 - 80

Указанный кварц-турмалиновый отход - 20 - 25о

Описание изобретения к патенту

Изобретение относится к составам огнеупорных масс для литейного производства и производства огнеупоров, и может быть использовано в машиностроительной и металлургической отраслях народного хозяйства.

Известен состав [1] огнеупорной массы, содержащий, мас.%: глина огнеупорная 1-11, магний сернокислый 4-10, порошок обожженного магнезита 15-35, шамот - остальное. Данная огнеупорная масса имеет сложный многокомпонентный состав с высокой температурой (согласно [2] - 1575oC) образования жидкой фазы системы MgO-Al2O3-SiO2, что обуславливает высокую стоимость получаемых огнеупорных изделий. Последнее ограничивает диапазон применения огнеупорных изделий из данной массы, например, для футеровки туннельных обжиговых печей.

Разработан состав огнеупорной массы системы каолинит - Al2O3-SiO2-B2O3 [3] , который также содержит дорогостоящие компоненты, в частности обогащенный каолинит. При этом температура обработки изделий из данной огнеупорной массы достаточно высока (1400-1450oC), а физико-механические характеристики низкие.

Наиболее близким по технической сущности и достигаемому результату является огнеупорная масса системы Al2O3-SiO2, содержащая, мас.%: шамот 48, глина огнеупорная 52 [4]. Фракционный состав шамота при пластическом формировании изделий влажности 16-19% составлял: фракции > 3 мм - 0,8%; фракции < 0,54 мм - 49,0%. Минералогический состав отожженных огнеупорных изделий составлял, мас.%: Al2O3 28; SiO2 48,63.

Однако рассматриваемый состав-прототип огнеупорной массы содержит ряд недостатков, препятствующих получению требуемого технического результата. Процесс получения огнеупорных изделий из состава-прототипа энергоемок. Изделия, получаемые из рассматриваемой огнеупорной массы, подвергаются высокотемпературной (1300-1450oC) обработке. Кроме того, получение шамота из огнеупорных глин также приводит к дополнительным затратам. При этом изделия имеют недостаточно высокие физико-механические свойства и химическую стойкость к воздействию шлаков.

Эти и другие недостатки устраняются предлагаемым техническим решением.

Сущность изобретения заключается в том, что предлагается состав огнеупорной массы, состоящий, мас.%: глина Комсомольского района минералогического состава, мас.%: Al2O3 6,2; SiO2 62,62; СаО 0,48; FeO 0,42; Fe2O3 3,83; ППП 8,11, - 75-80; кварц-турмалиновый отход (КТО) Солнечного горно-обогатительного комбината Комсомольского района минералогического состава, мас.%: Al2O3 13,75; SiO2 61,15; Fe2O3 5,00; FeO 8,10; TiO2 0,68; СаО 1,20; MgO 3,30; Na2O 1,25; K2O 1,60; B2O3 1,90; ППП 2,02, - 20-25.

Необходимо отметить, что данные компоненты огнеупорной массы для изготовления огнеупорных изделий ранее не использовались. Фракционный состав КТО при пластическом формировании изделий влажности 16-19% составлял: фракции > 3 мм 0,8%; фракции < 0,54 мм 49,0%. Минералогический состав отожженных огнеупорных изделий составлял, мас. %: Al2O3 15,5875 - 15,71; SiO2 62,2525 - 62,28; СаО 0,624 - 0,66; FeО 1,956 - 2,340; Fe2O3 4,064 - 4,1225; TiO2 0,136 - 0,17; MgO 0,66 - 0,825; Na2O 0,25 - 0,3125; K2O 0,32 - 0,4; B2O3 0,38 - 0,475; ППП 6,5875 - 6,892.

Задача, решаемая предлагаемым составом огнеупорной массы, заключается в повышении физико-механических свойств изготовляемых огнеупорных изделий.

Наличие в КТО легкоплавких окислов способствует образованию жидкой фазы в структуре изделия - сырца при более низких температурах, чем температура обжига, что интенсифицирует процесс спекания изделия. Кроме того, при обжиге огнеупоров системы Al2O3-SiO2 B2O3 играет роль активной минерализирующей добавки, которая активизирует процесс образования муллита [3]. Первые зародыши кристаллов муллита образуются уже при 900oC. При дальнейшем росте температуры процесс муллитообразования лишь интенсифицируется.

Таким образом, реализуется возможность снижения температуры обжига огнеупорных изделий до 900 - 950oC при повышении физико-механических свойств последних (см. таблицу).

Из таблицы видно, что изменение концентрации КТО в огнеупорной массе приводит к снижению физико-механических свойств изделий.

Признаки, характеризующие изобретение:

- ограничительные: огнеупорная масса включает шамот и огнеупорную глину;

- отличительные: огнеупорная масса содержит, мас.%: глина минералогического состава, мас.%: Al2O3 16,2; SiO2 62,62; СаО 0,48; FeO 0,42; Fe2O3 3,83; ППП 8,11, -75 - 80; кварц-турмалиновый отход минералогического состава, мас. %: Al2O3 13,75; SiO2 61,15; Fe2O3 5,00; FeО 8,10; TiO2 0,68; CaO 1,20; MgO 3,30; Na2O 1,25; K2O 1,60; В2O3 1,90; ППП 2,02, - 20 - 25.

Причинно-следственная связь между существенными признаками и достигаемым техническим решением осуществляется посредством способности легкоплавки окислов КТО в процессе обжига огнеупорных изделий образовать жидкую фазу при более низких температурах термообработки, способствуя интенсивному взаимодействию B2O3 и элементов системы Al2O3-SiO2 с образованием муллита 3Al2O3огнеупорная масса, патент № 21511292SiO2 и более полному спеканию структуры огнеупорного изделия. В совокупности действия полиморфных превращений и физико-химических процессов повышаются физико-механические свойства получаемых огнеупорных изделий.

Промышленная применимость разработанного состава огнеупорной массы обуславливается доступностью, региональной принадлежностью и невысокой стоимостью компонентов огнеупорной массы; снижением энергозатрат за счет упразднения операции обжига шамота и длительности операции обжига огнеупорных изделий за счет снижения температуры процесса до 900-950oC; повышением физико-механических свойств огнеупорных изделий. Кроме перечисленного, была определена повышенная стойкость к действию шлаков при плавке сталей и цветных сплавов.

ЛИТЕРАТУРА

1. Огнеупорная масса. Кабанов B.C., Суворов С.А., Власов В.В., Редько Г. С. ; Ленингр.технол.ин-т. А.С.963975, СССР. 3аявл.07.07.80, N 2954516/29-33, опубл. в Б.И., 1982, N37. МКИ С 04 В 33/22.

2. Стрелов К.К. Теоретические основы технологии огнеупорных. - М.: Металлургия, 1985. С.234.

3. Гончаров Ю. И., Терсенова Л.А., Альеов Ю.Н. Двухслойный теплоизоляционный огнеупор// Огнеупоры, 1993. N6. С.33-34.

4. Мамыкин П.С., Стралов К.К. Технология огнеупоров. - М.: Металлургия, 1988, С.266-275.

5. Долотов Г. П. , Кондаков Е.А. Печи и сушила литейного производства: Учебник для техникумов, 2-е изд. , перераб. и доп. - М.: Машиностроение, 1984. 232с.

Класс C04B35/66 монолитные огнеупоры или огнеупорные строительные растворы, в том числе содержащие или не содержащие глину 

способ изготовления керамических тиглей для алюмотермической выплавки лигатур, содержащих ванадий и/или молибден -  патент 2525890 (20.08.2014)
способ изготовления керамических тиглей для алюмотермической выплавки лигатур редких тугоплавких металлов -  патент 2525887 (20.08.2014)
огнеупорная пластичная масса -  патент 2507179 (20.02.2014)
огнеупорный материал для монтажа и ремонта футеровки тепловых агрегатов -  патент 2497779 (10.11.2013)
композиции для литья, отливки из нее и способы изготовления отливки -  патент 2485076 (20.06.2013)
смесь для горячего ремонта литейного оборудования -  патент 2484061 (10.06.2013)
способ получения огнеупорной керамобетонной массы -  патент 2483045 (27.05.2013)
титансодержащая добавка -  патент 2481315 (10.05.2013)
магнезиальная торкрет-масса -  патент 2465245 (27.10.2012)
бетонная масса -  патент 2462435 (27.09.2012)

Класс C04B33/00 Изделия из глины

Наверх