способ гальванохимической обработки радиоактивных растворов

Классы МПК:G21F9/06 способы обработки
C02F1/463 электрокоагуляцией
Автор(ы):, , , , , ,
Патентообладатель(и):Новосибирский государственный проектно-изыскательский институт "ВНИПИЭТ"
Приоритеты:
подача заявки:
1998-04-24
публикация патента:

Изобретение относится к области очистки от тория, урана и трансурановых элементов радиоактивных растворов, образующихся на предприятиях атомной промышленности. По предлагаемому способу в обрабатываемый раствор диспергируют воздух или озоновоздушную смесь, после чего пропускают через виброкипящую с изменяющейся частотой вибрации гальваническую пару железо - кокс или чугун - кокс, проводят корректировку рН среды щелочью с добавлением монтмориллонитовой глины, а затем отделяют твердую фазу; виброкипение насадки осуществляют вертикально-горизонтальными колебаниями; изменение частоты вибрации производят, сравнивая показатели рН-метров, установленных до и после гальванопары. Техническим результатом изобретения является снижение затрат на очистку радиоактивных растворов от урана и трансурановых элементов. 2 з.п. ф-лы, 3 табл.
Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

1. Способ гальванохимической обработки радиоактивных растворов, включающий их обработку в гальванокоагуляторе и отделение твердой фазы, отличающийся тем, что в обрабатываемый раствор диспергируют воздух или озоновоздушную смесь, после чего пропускают через виброкипящую с изменяющейся частотой вибрации гальваническую пару железо - кокс или чугун - кокс, проводят корректировку pH среды щелочью с добавлением монтмориллонитовой глины, а затем отделяют твердую фазу.

2. Способ по п.1, отличающийся тем, что виброкипение насадки осуществляют вертикально-горизонтальными колебаниями.

3. Способ по п. 1, отличающийся тем, что изменение частоты вибрации производят, сравнивая показатели pH-метров, установленных до и после гальванопары.

Описание изобретения к патенту

Предлагаемое изобретение относится к области очистки от тория, урана и трансурановых элементов сбросных растворов предприятий атомной промышленности. Известен способ очистки растворов от радионуклидов, заключающийся в адсорбции последних на гидроксидах Fe(OH)3 или Al(OH)3 [1]. Гидроксид железа захватывает практически все элементы. Этот процесс позволяет удалить до 97% общей радиоактивности делящихся материалов.

Недостатками данного способа являются периодичность процесса и необходимость введения растворимых солей, например сульфата железа, что повышает общее солесодержание очищенных растворов.

Наиболее близким по технической сущности и достигаемому эффекту к предлагаемому является электрокоагуляционный способ очистки радиоактивных растворов, включающий непрерывную обработку воды, загрязненной продуктами деления в электрокоагуляторе с плоскими алюминиевыми электродами [2]. Применение этого способа позволяет очищать растворы с активностью 0,1-1,0 способ гальванохимической обработки радиоактивных растворов, патент № 2147777 Ки/л.

Недостатком способа являются большие энергозатраты, наличие силового электрооборудования и использование в качестве растворимых электродов дорогостоящего листового металла.

Технической задачей, решаемой изобретением, является снижение затрат на очистку радиоактивных растворов от урана и трансурановых элементов.

Решение технической задачи обеспечивается тем, что по предлагаемому способу в обрабатываемый раствор диспергируют воздух или озоновоздушную смесь, после чего пропускают через виброкипящую с изменяющейся частотой вибрации гальваническую пару железо - кокс или чугун - кокс, проводят корректировку pH среды щелочью с добавлением монтмориллонитовой глины, а затем отделяют твердую фазу; виброкипение насадки осуществляют вертикально-горизонтальными колебаниями; изменение частоты вибрации производят, сравнивая показатели pH-метров, установленных до и после гальванопары.

Подача воздуха или озоновоздушной смеси в обрабатываемый раствор необходима для облегчения виброкипения гальванопары, ускорения процесса перевода двухвалентного железа в трехвалентное, гидроксид которого имеет более высокую, чем у двухвалентного, сорбционную способность по трансурановым элементам и лучшую кинетику осаждения.

Ввод в обработанный раствор монтмориллонитовой глины позволяет снизить расход железа гальванопары и повышать степень очистки растворов от радионуклидов.

Виброкипение насадки осуществляют вертикально-горизонтальными колебаниями гальванокоагулятора, благодаря чему исключается гравитационное разделение частиц гальванопары с различными плотностью и размерами зерен и предотвращается зарастание гальванопары отложениями радиоактивных растворов.

Изменение частоты вибрации необходимо для регулирования выработки в раствор гидроксида железа. Регулирование производят, сравнивая показатели pH-метров, установленных до и после гальванопары.

В табл. 1 приведен состав радиоактивных растворов, в табл. 2 представлены результаты анализов растворов на содержание радионуклидов в процессе гальванохимической очистки, а в табл. 3 - результаты анализа сбросных радиоактивных растворов на содержание тяжелых металлов в процессе гальванохимической очистки.

В обрабатываемые радиоактивные растворы за счет водяного центробежного насоса подсасывают воздух (или озоновоздушную смесь) в количестве 3-5 об.% и полученную газожидкостную смесь подают под избыточным давлением на виброкипящую насадку для гальванохимической обработки. Частицы гальванопары колеблются в вертикально-горизонтальном направлении и за счет этого интенсивно циркулируют во всем объеме насадки. Снятие диффузионных ограничений способствует повышенной генерации гидроксида железа.

После гальванохимической обработки в радиоактивные растворы вводят минеральный сорбент, например монтмориллонитовую глину, до достижения концентрации по глине ~1 г/л. Обработанные растворы доводят по pH до 8-9 и направляют в отстойник для разделения фаз.

В процессе гальванохимической обработки возможны колебания состава входящих радиоактивных растворов и обусловленное этим колебание выработки в очищаемые растворы гидроксида железа. Для исключения этого негативного явления необходимо регулировать частоту вибрации, с ростом которой происходит увеличение генерации гидроксида железа в очищаемые растворы. Оптимальная частота колебаний достигается за счет подачи управляющего сигнала, как сравнения показаний pH-метров, установленных до и после гальванопары. Сигнал подается на исполнительный механизм (например, на вал электродвигателя, с установленным на нем эксцентриком), обеспечивающий вибрацию насадки.

Частота вибрации гальванопары должна иметь минимальное значение, при котором обеспечивается нормальная работа, выражающаяся в достижении достаточной интенсивности встряхивания насадки и оптимальном насыщении обрабатываемого раствора ионами железа. Этот показатель контролируется по показателям pH-метров, установленных до и после гальванопары. Частота вибрации не может быть постоянно максимальной, поскольку это приводит к ускоренному и непроизводительному износу частиц гальванопары.

Для иллюстрации заявляемого изобретения приводим примеры осуществления заявляемого способа.

Пример 1. На очистку поступает радиоактивный раствор, в состав которого входят радионуклиды - 238U, 239Pu и 241Am. Состав раствора представлен в табл. 1 (проба 1).

По предлагаемому способу в радиоактивный раствор, который имеет pH 2,1, диспергируют воздух из расчета 30-50 мл/л. Затем раствор подают в гальванокоагулятор, заполненный смесью железных стружек и кокса на гальванохимическую обработку. Частоту вибрации гальванокоагулятора подбирают в соответствии с показаниями pH- метров, установленных до и после гальванопары; она составляет 18 Гц. Обработанный радиоактивный раствор делят на две части. В первой проводят корректировку pH среды щелочью, а во второй корректировку pH среды щелочью с добавлением монтмориллонитовой глины из расчета 1 г/л раствора и отправляют на разделение фаз.

Анализ растворов производят до и после гальванохимической обработки и после коррекции pH среды щелочью. Результаты анализов представлены в табл. 2, из которой следует, что гальванохимическая обработка радиоактивных растворов по предлагаемому способу позволяет достигать высоких коэффициентов очистки.

Пример 2. На очистку поступает радиоактивный раствор, полученный от вскрытия илов открытых хранилищ радиоактивных отходов (табл. 1 проба 2). В его состав входят радионуклиды - 238U, 239Pu и 241Am.

В растворы, имеющие pH 2.6, диспергируют атмосферный воздух из расчета 30-50 мл/л и подают в гальванокоагулятор, заполненный смесью железных стружек и кокса на гальванохимическую обработку. Частоту вибрации гальванокоагулятора подбирают в соответствии с показаниями pH-метров, установленных до и после гальванопары; она составляет 20 Гц. Обработанные радиоактивные растворы делят на две части. В первой проводят корректировку pH среды щелочью, а во второй корректировку pH среды щелочью с добавлением монтмориллонитовой глины из расчета 1 г/л раствора и отправляют на разделение фаз.

Обработанные таким образом радиоактивные растворы фильтруют. Анализ производят до и после гальванохимической обработки и после коррекции pH среды щелочью. Результаты анализов представлены в табл. 2.

Пример 3. На очистку поступают радиоактивные сбросные растворы - отработанные скрубберные воды. Исходный состав и результаты анализов очищенных растворов приведены в табл. 3. По предлагаемому способу исходный раствор, имеющий pH 2.6 и 4.0 с диспергированным в нем озонированным воздухом 50 мл/л и концентрацией озона в нем 2 об.%, подают в гальванокоагулятор. Частоту вибрации гальванокоагулятора подбирают в соответствии с показаниями pH-метров, установленных до и после гальванопары; она составляет 18 и 27 Гц. После обработки растворов в гальванокоагуляторе проводят корректировку pH среды щелочью, добавляют в них монтмориллонитовую глину из расчета 1 г/л, а затем отправляют на разделение фаз.

На выходе из гальванокоагулятора озон отсутствует. Подача озона в диспергируемой газовой фазе ускоряет переход ионов железа (II) в железо (III), гидроксид которого обладает меньшей растворимостью в воде, более высокой сорбционной емкостью не только к катионам тяжелых и цветных металлов, но и к анионам, что обеспечивает снижение по SO42-, PO43-, Cl-.

Таким образом, заявляемый способ позволяет снижать затраты и эффективно очищать различные по составу радиоактивные растворы от радионуклидов.

Предлагаемое техническое решение соответствует критериям промышленной применимости, новизны и изобретательского уровня.

Источники информации

1. Краткий курс радиохимии /Под ред. А.В.Николаева.- М.: Высшая школа, 1969, с. 125.

2. Грановский М.Г., Лавров И.С., Смирнов О.В. Электрообработка жидкостей /Под ред. докт. техн. наук И.С.Лавров, -Л.: Химия, 1976.

Класс G21F9/06 способы обработки

способ обработки радиактивного раствора -  патент 2514823 (10.05.2014)
экстракционная смесь для выделения актинидов из жидких радиоактивных отходов -  патент 2499308 (20.11.2013)
способ обработки структуры, содержащей натрий и радиоактивное вещество -  патент 2492535 (10.09.2013)
способ переработки жидких радиоактивных отходов от применения дезактивирующих растворов -  патент 2473145 (20.01.2013)
способ определения суммарной объемной активности радиоактивно-загрязненных пресных вод -  патент 2461901 (20.09.2012)
способ выведения нептуния при фракционировании долгоживущих радионуклидов -  патент 2454740 (27.06.2012)
способ переработки мало- и среднеминерализованных низкоактивных жидких радиоактивных отходов в полевых условиях -  патент 2439725 (10.01.2012)
способ очистки воздуха от радиоактивных веществ -  патент 2422927 (27.06.2011)
способ очистки и дезактивации оборудования атомных электрических станций (варианты) -  патент 2397558 (20.08.2010)
способ дезактивации оборудования -  патент 2387033 (20.04.2010)

Класс C02F1/463 электрокоагуляцией

способ очистки сточных вод от ионов тяжелых металлов -  патент 2519412 (10.06.2014)
резервуар для очистки воды -  патент 2497756 (10.11.2013)
устройство и способ для обработки сточных вод -  патент 2494976 (10.10.2013)
установка очистки природных и сточных вод -  патент 2464235 (20.10.2012)
устройство для электрохимической очистки питьевой воды -  патент 2452690 (10.06.2012)
способ электрообработки воды в установке получения питьевой воды методом электрохимической коагуляции и устройство для его осуществления -  патент 2436736 (20.12.2011)
комплекс сорбционной очистки загрязненных вод -  патент 2422383 (27.06.2011)
устройство для очистки воды с использованием фильтрации -  патент 2422376 (27.06.2011)
способ электрохимической очистки питьевой воды и устройство для его реализации -  патент 2417951 (10.05.2011)
установка для очистки жидкости, способ промывки половолоконного фильтра и применение способа промывки половолоконного фильтра -  патент 2410336 (27.01.2011)
Наверх