жидкостно-газовый эжектор

Классы МПК:F04F5/02 когда индуцирующей текучей средой является струя жидкости 
Автор(ы):
Патентообладатель(и):Попов Сергей Анатольевич (RU),
Петрухин Евгений Дмитриевич (CY)
Приоритеты:
подача заявки:
1998-03-16
публикация патента:

Эжектор предназначен для создания вакуума. Расстояние от выходного сечения сопла до входного сечения камеры смешения определяют из математического выражения жидкостно-газовый эжектор, патент № 2142072 где L - расстояние от выходного сечения сопла до входного сечения камеры смешения, мм, k - коэффициент, составляющий величину от 0,001 до 0,3, жидкостно-газовый эжектор, патент № 2142072 - отношение площади наименьшего проходного сечения сопла к площади наименьшего проходного сечения камеры смешения, G - расход жидкой среды через сопло, г/с, жидкостно-газовый эжектор, патент № 2142072 - расходный параметр сопла, г/сжидкостно-газовый эжектор, патент № 2142072мм2, составляющий величину от 0,5 до 1,1. В результате повышается КПД эжектора. 1 ил.
Рисунок 1

Формула изобретения

Жидкостно-газовый эжектор, содержащий сопло и камеру смешения, отличающийся тем, что расстояние от выходного сечения сопла до входного сечения камеры смешения определяют из математического выражения

жидкостно-газовый эжектор, патент № 2142072

где L - расстояние от выходного сечения сопла до входного сечения камеры смешения, мм;

k - коэффициент, составляющий величину от 0,001 до 0,3;

жидкостно-газовый эжектор, патент № 2142072 - отношение площади наименьшего проходного сечения сопла к площади наименьшего проходного сечения камеры смешения;

G - расход жидкой среды через сопло, г/с;

жидкостно-газовый эжектор, патент № 2142072 - расходный параметр сопла, г/сжидкостно-газовый эжектор, патент № 2142072мм2, составляющий величину от 0,5 до 1,1.

Описание изобретения к патенту

Изобретение относится к области струйной техники, преимущественно к жидкостно-газовым эжекторам для создания вакуума.

Известен эжектор, содержащий паровое сопло, сужающуюся по ходу потока камеру смешения с горловиной и диффузор (см. книгу Соколова Е.Я. и Зингера Н.М. Струйные аппараты, Москва, Энергоатомиздат, 1989, с. 94-95).

Данные эжекторы получили широкое распространение для откачки парогазовых сред в конденсационных установках паровых турбин и пароэжекторных холодильных установках.

Однако при откачке газообразных сред с большим содержанием конденсируемых в процессе откачки компонентов эффективность данных эжекторов сравнительно невысока.

Наиболее близким к описываемому изобретению по технической сущности и достигаемому результату является жидкостно-газовый эжектор, содержащий жидкостное сопло и камеру смешения (см. книгу Соколова Е.Я и Зингера Н.М. Струйные аппараты, Москва, Энергоатомиздат, 1989, с. 213-214).

Данные эжекторы получили широкое распространение в энергетике в качестве воздухоотсасывающих устройств конденсационных установок, в схемах вакуумной деаэрации воды, для создания вакуума в различных емкостях. Характерной особенностью данных эжекторов является то, что при отсасывании данными эжекторами паровоздушной смеси, содержащийся в последней пар конденсируется, вследствие чего сжатию в камере смешения подвергается водовоздушная смесь (при использовании воды в качестве жидкой среды, подаваемой в сопло).

Однако эффективность работы данных эжекторов недостаточно высока, что часто связано с тем, что на работу жидкостно-газового эжектора оказывает большое влияние расстояние от выходного сечения сопла до входного сечения камеры смешения.

Задачей, на решение которой направлено настоящее изобретение, является повышение КПД жидкостно-газового эжектора путем оптимизации расстояния от выходного сечения сопла до входного сечения камеры смешения.

Указанная задача решается за счет того, что в жидкостно-газовом эжекторе, содержащем сопло и камеру смешения, расстояние от выходного сечения сопла до входного сечения камеры смешения определяют из математического выражения

жидкостно-газовый эжектор, патент № 2142072

где L - расстояние от выходного сечения сопла до входного сечения камеры смешения (мм);

k - коэффициент, составляющий величину от 0,001 до 0,3;

жидкостно-газовый эжектор, патент № 2142072 - отношение площади наименьшего проходного сечения сопла к площади наименьшего проходного сечения камеры смешения;

G - расход жидкой среды через сопло (г/с);

жидкостно-газовый эжектор, патент № 2142072 - расходный параметр сопла (г/сжидкостно-газовый эжектор, патент № 2142072мм2), составляющий величину от 0,5 до 1,1.

В ходе проведенных исследований было установлено, что на эффективность откачки газообразной среды жидкостно-газовым эжектором значительное влияние оказывает расстояние, на котором расположено выходное сечение сопла от входного сечения камеры смешения, причем на величину этого расстояния основное влияние оказывают расход жидкой среды через сопло и расходный параметр сопла.

Было установлено, что целесообразно выполнять сопло, расходный параметр которого составлял бы величину, лежащую в диапазоне от 0,5 до 1,1, причем коэффициент k должен лежать в диапазоне от 0,001 до 0,3.

Кроме того, было установлено, что величина дисперсности струи жидкости на выходе из сопла в значительной степени зависит от давления жидкости на входе в сопло, от расхода жидкой среды через сопло и от площади наименьшего проходного сечения сопла. В свою очередь, было установлено, что на расстояние между выходным сечением сопла и входным сечением камеры смешения оказывают влияние как отношение между минимальными проходными сечениями сопла и камеры смешения, так и форма струи диспергированной жидкости за выходным сечением сопла. Под формой струи в первую очередь понимается величина распыленности потока жидкости за выходным сечением сопла. При этом самое важное, что была выявлена зависимость взаимного влияния между указанными величинами, что позволило при конструировании жидкостно-газового эжектора точно определять оптимальное расстояние от выходного сечения сопла до входного сечения камеры смешения при заданных параметрах работы эжектора и при других его оптимальных габаритных характеристиках.

Таким образом, используя указанные выше математические выражения, полученные на основании обработки экспериментальных результатов удалось добиться повышения КПД жидкостно-газового эжектора при минимальных энергетических затратах на откачку газообразных сред.

На чертеже схематически представлен жидкостно-газовый эжектор.

Жидкостно-газовый эжектор содержит сопло 1, камеру 2 смешения с диффузором 3 (если последний будет выполнен) и приемную камеру 4. Расстояние (L) от выходного сечения сопла 1 до входного сечения камеры 2 смешения определяют из математического выражения

жидкостно-газовый эжектор, патент № 2142072

где L - расстояние от выходного сечения сопла до входного сечения камеры смешения (мм);

k - коэффициент, составляющий величину от 0,001 до 0,3;

жидкостно-газовый эжектор, патент № 2142072 - отношение площади наименьшего проходного сечения сопла к площади наименьшего проходного сечения камеры смешения;

G - расход жидкой среды через сопло (г/с);

жидкостно-газовый эжектор, патент № 2142072 - расходный параметр сопла (г/сжидкостно-газовый эжектор, патент № 2142072мм2), составляющий величину от 0,5 до 1,1.

Жидкостно-газовый эжектор работает следующим образом.

Жидкая среда под заданным давлением подается в сопло 1. Истекая из сопла 1, поток диспергированной жидкости увлекает из приемной камеры 4 газообразную среду в камеру 2 смешения, где жидкая среда смешивается с откачиваемой газообразной средой и сжимает последнюю. Из камеры 2 смешения смесь сред поступает в диффузор 3 (если он установлен за камерой 2 смешения) и далее по назначению.

Данный эжектор может быть использован в химической, нефтехимической и других отраслях промышленности, где требуется откачка газообразных, в том числе и парогазообразных сред, с их последующим сжатием.

Класс F04F5/02 когда индуцирующей текучей средой является струя жидкости 

скважинная струйная установка для гидроразрыва пластов и освоения скважин -  патент 2473821 (27.01.2013)
скважинная установка для воздействия на призабойную зону пласта -  патент 2460869 (10.09.2012)
струйный аппарат -  патент 2452877 (10.06.2012)
способ подъема воды и устройство для его осуществления -  патент 2450172 (10.05.2012)
струйный аппарат -  патент 2406883 (20.12.2010)
скважинная струйная установка для гидродинамических испытаний скважин -  патент 2342568 (27.12.2008)
способ и устройство для снижения шума работающего масляного инжектора -  патент 2335661 (10.10.2008)
агрегат струйный для химической обработки призабойной зоны -  патент 2330995 (10.08.2008)
скважинная струйная установка эмпи-угис-(11-20)гд -  патент 2320900 (27.03.2008)
способ работы скважинной струйной установки при гидроразрыве многопластовых залежей углеводородов -  патент 2310103 (10.11.2007)
Наверх