способ анализа пористой структуры

Классы МПК:G01N15/08 определение проницаемости, пористости или поверхностной площади пористых материалов 
G01N7/14 путем создания условий для выделения из материала газа или пара, например водяного пара, и измерения разности давления или объема 
G01N5/00 Анализ материалов путем взвешивания, например взвешивание малых частиц, выделенных из газов или жидкостей
Автор(ы):, ,
Патентообладатель(и):Институт нефтехимического синтеза им.А.В.Топчиева РАН
Приоритеты:
подача заявки:
1998-04-17
публикация патента:

Изобретение относится к анализу физико-механических свойств материалов, а именно пористой структуры и сорбционных свойств разнообразных объектов, таких как мембраны, катализаторы, сорбенты, фильтры, электроды, породы, почвы, ткани, кожи, строительные материалы и др., и может быть использовано в тех областях науки и техники, где они применяются. Способ анализа пористой структуры включает измерение количества адсорбата внутри анализируемого образца путем взвешивания и определение равновесного относительно давления адсорбата в ячейке с образцом посредством измерения скорости отвода паров из ячейки без нарушения квазиравновесного состояния между адсорбатом в образце и его паром в ячейке. Способ позволяет менять адсорбаты в широких пределах изменения давления их паров. Это повышает информативность способа. 3 ил.
Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

Способ анализа пористой структуры, включающий измерение количества адсорбата внутри анализируемого образца путем взвешивания и определение равновесного относительного давления паров адсорбата в ячейке с образцом, отличающийся тем, что относительное давление паров определяют путем измерения скорости отвода паров из ячейки без нарушения квазиравновесного состояния между адсорбатом в образце и его паром в ячейке.

Описание изобретения к патенту

Изобретение относится к анализу физико-химических свойств материалов, а именно пористой структуры и сорбционных свойств разнообразных объектов, таких как мембраны, катализаторы, сорбенты, фильтры, электроды, породы, почвы, ткани, кожи, строительные материалы и др., и может быть использовано в тех областях науки и техники, где они применяются.

Известен способ анализа пористой структуры путем определения изотерм сорбции паров жидкостей в равновесных статических условиях [1]. Способ основан на определении количества адсорбата в образце путем взвешивания на весах. Давление паров над анализируемым образцом (Р) создают за счет испарения из ампулы с адсорбатом и определяют с помощью манометров по ходу увеличения или уменьшения давления, выдерживая каждую точку до установления равновесия между адсорбатом в образце и его паром над образцом.

Данный способ имеет широкое распространение, так как позволяет непосредственно измерять адсорбцию и давление паров адсорбата. Его основным недостатком является длительность проведения измерений, достигающая нескольких дней, а иногда и больше. Это объясняется необходимостью поддерживать равновесие жидкость/пар между малым объемом адсорбата в ограниченном по массе и объему анализируемом образце и большим объемом пара в коммуникациях измерительной установки, удаленных от образца на значительное расстояние.

Известен способ анализа пористой структуры путем определения изотерм сорбции паров непрерывной десорбцией их в динамических условиях [2] (аналог). Способ основан на постоянном вытеснении предварительно адсорбированного пара неадсорбируемым газом-носителем, содержащим адсорбат, относительное давление которого в смеси изменяется от P/P0 до 0. Изменение концентрации адсорбата в потоке регистрируют двумя детекторами по теплопроводности, между которыми находится трубка с анализируемым образцом. По разнице концентраций адсорбата после и до образца рассчитывают количество адсорбата, десорбированного с образца в единицу времени, а затем в течение всей десорбции. Такой недостаточно точный кумулятивный косвенный метод определения количеств адсорбата в образце является недостатком данного способа.

Известен способ анализа пористой структуры путем измерения адсорбции паров в динамических условиях [3] (прототип), осуществляемого периодическим взвешиванием ячейки с анализируемым образцом по ходу адсорбции или десорбции адсорбата из потока смеси газа-носителя с парами адсорбата. Давление паров адсорбата в ячейке с образцом контролируют изменением скорости потока чистого газа-носителя, разбавляющего в смесителе поток того же газа, насыщенного парами адсорбата в специальном испарителе при температуре опыта. Способ позволяет получать при атмосферном давлении без использования сложного оборудования изотермы сорбции, хорошо согласующиеся с изотермами, получаемыми самым распространенным статическим способом на высоковакуумной установке.

Недостатком данного способа является необходимость многократного периодического взвешивания ячейки с образцом и сложность регулирования и контроля относительного давления паров адсорбата, для чего необходимо помимо температуры контролировать скорости потоков чистого и насыщенного газа-носителя, а также барометрическое давление и гидравлическое сопротивление системы.

Задачей изобретения является расширение арсенала способов анализа пористой структуры.

Указанная задача достигается тем, что в способе анализа пористой структуры, включающем измерение количества адсорбата внутри анализируемого образца путем взвешивания и определение равновесного относительного давления паров адсорбата в ячейке с образцом, относительное давление пара определяют путем измерения скорости отвода паров из ячейки без нарушения квазиравновесного состояния между адсорбатом в образце и его паром в ячейке.

В соответствии с изобретением измерение изотермы десорбции производят следующим образом. Предварительно насыщенный адсорбатом анализируемый образец с некоторым избытком жидкости помещают в специальную ячейку, имеющую отводное отверстие (трубку), позволяющее отводить пары адсорбата с ограниченной скоростью, определяемой типом адсорбата, температурой, геометрией отводного устройства и концентрацией (давлением) паров адсорбата на выходе из ячейки. Ячейку размещают на термостатируемых весах и выдерживают с целью термостатирования. Далее производят измерение кривой сушки (десорбции), т.е. зависимости массы адсорбата в анализируемом образце от времени по мере испарения адсорбата из ячейки. При этом процесс отвода паров производят со скоростью заведомо меньшей, чем скорость десорбции адсорбата с поверхности образца в объем ячейки, чтобы поддерживать внутри ячейки квазиравновесное состояние между адсорбатом в образце и его паром. Для упрощения дальнейших расчетов концентрацию паров на выходе из ячейки поддерживают равной нулю путем обдува потоком осушенного газа.

В указанных выше условиях проведения измерения скорость отвода паров адсорбата пропорциональна концентрации (давлению) его паров в ячейке и выполняется условие тождественного равенства текущих значений относительного давления паров адсорбата в ячейке отношению текущих значений скорости отвода паров к максимальной скорости, соответствующей давлению насыщения при температуре опыта (при этом абсолютное значение давления насыщения (P0) в общем случае измерять нет необходимости).

Массу адсорбата в анализируемом образце определяют из кривой сушки (десорбции), а по ее производной по времени - скорость отвода и соответственно относительное давление паров адсорбата, строят искомую изотерму десорбции. Далее из измеренной изотермы с помощью уравнения Кельвина или других известных методик расчета находят распределение пор по радиусам и другие параметры пористой структуры анализируемого образца.

Пример 1. Для реализации предложенного способа используют электронные аналитические весы А-120 S, помещенные в воздушный термостат. На весах размещают металлическую ячейку цилиндрической формы, имеющую крышку с отверстием, в котором закрепляют отводные трубки разной длины и диаметра. Вблизи наружного края отводной трубки размещают сопло для подачи осушенного азота из баллона. В качестве адсорбата используют гептан.

На фиг. 1 приведена измеренная по примеру 1 изотерма десорбции гептана для неорганической мембраны из карбида кремния. На фиг.2 приведено полученное по примеру 1 из изотермы десорбции гептана дифференциальное распределение объемов пор по логарифму радиусов мембраны из карбида кремния.

Пример 2. По примеру 1, но в качестве адсорбата используют изопропиловый спирт. На фиг. 3 приведены интегральные и дифференциальные распределения объемов пор по радиусам селективного слоя ультрафильтрационных полиамидных мембран РА-100 в исходном состоянии и после их модификации радиационной прививкой N,N-диэтилакриламидом.

Достоинством предложенного способа является возможность варьирования адсорбатов в широких пределах изменения давления их паров, что повышает информативность способа. Кроме того, способ позволяет анализировать образцы с малой пористостью при использовании больших навесок образца, а также анализировать тонкослойные образцы с малым объемом пор на единицу внешней поверхности за счет возможности анализа большой площади образца единовременно.

Источники информации

1. Экспериментальные методы в адсорбции и молекулярной хроматографии. Под ред. А.В.Киселева, В.П.Древинга. Изд-во МГУ, 1973, c. 108.

2. Пористая структура катализаторов и процессы переноса в гетерогенном катализе. Под ред. Г.К.Борескова. Изд-во "Наука", Новосибирск, 1970, c. 183.

3. А.М.Рубинштейн, В.А.Афанасьев. Использование динамического метода измерения адсорбции паров для определения величины поверхности катализаторов, Изв. АН СССР ОХН, 1956, N 1, c.1294-1303.

Класс G01N15/08 определение проницаемости, пористости или поверхностной площади пористых материалов 

способ энергетической оценки воздействия на почву рабочих органов почвообрабатывающих машин и орудий -  патент 2528551 (20.09.2014)
способ измерения пористости частиц сыпучих материалов -  патент 2527656 (10.09.2014)
способ прогнозирования изменения свойств призабойной зоны пласта под воздействием бурового раствора -  патент 2525093 (10.08.2014)
способ определения зависимости коэффициента проницаемости пластически деформируемого пористого материала как функции от массового содержания и давления жидкости -  патент 2524046 (27.07.2014)
способ контроля ресурса фильтроэлемента -  патент 2520488 (27.06.2014)
способ и устройство для тестирования на герметичность фильтрованного устройства -  патент 2518472 (10.06.2014)
способ определения неоднородностей упругих и фильтрационных свойств горных пород -  патент 2515332 (10.05.2014)
способ измерения пористости хлебобулочного изделия и устройство для осуществления -  патент 2515118 (10.05.2014)
способ определения коэффициента фильтрации грунта -  патент 2513849 (20.04.2014)
способ определения коэффициента влагопроводности листовых ортотропных капиллярно-пористых материалов -  патент 2497099 (27.10.2013)

Класс G01N7/14 путем создания условий для выделения из материала газа или пара, например водяного пара, и измерения разности давления или объема 

способ определения давления газа в индивидуальных микросферах и устройство для его осуществления -  патент 2522792 (20.07.2014)
устройство для определения количества газов в жидкости -  патент 2499247 (20.11.2013)
способ определения концентрации газа в жидкости -  патент 2488092 (20.07.2013)
вакуумный манометрический прибор для определения парциального давления водяного пара и активности воды в пищевых продуктах с охлаждающими ультратермостатами на основе термоэлектрических холодильников -  патент 2463572 (10.10.2012)
способ измерения газовыделения материалов в вакууме -  патент 2395072 (20.07.2010)
способ обработки проб грунта для последующего определения газонасыщенности и установка для его осуществления -  патент 2348931 (10.03.2009)
способ определения характеристик сорбции газов материалами -  патент 2316752 (10.02.2008)
способ определения количества водорода в органических веществах и в комплексных соединениях с органическими лигандами -  патент 2316751 (10.02.2008)
установка для исследования пластовой нефти и газа -  патент 2310072 (10.11.2007)
способ измерения изменения парциальных давлений газов в мощном электровакуумном приборе -  патент 2306551 (20.09.2007)

Класс G01N5/00 Анализ материалов путем взвешивания, например взвешивание малых частиц, выделенных из газов или жидкостей

способ уменьшения изменчивости показаний анализатора влажности -  патент 2517987 (10.06.2014)
устройство для определения длины работающего слоя углеродного микропористого сорбента при поглощении паров органических веществ -  патент 2516642 (20.05.2014)
способ оперативного определения влажности угольного пласта -  патент 2513465 (20.04.2014)
способ многокритериальной оценки комфортности рабочей зоны производственных помещений -  патент 2511022 (10.04.2014)
способ количественного определения различных фаз водонасыщенности горных пород методом термомассометрии -  патент 2488091 (20.07.2013)
способ измерения относительной влажности воздуха -  патент 2486498 (27.06.2013)
способ многокритериальной оценки комфортности рабочей зоны производственных помещений -  патент 2472134 (10.01.2013)
способ определения содержания воды в нефтепродуктах -  патент 2450256 (10.05.2012)
способ измерения влагосодержания трансформаторного масла -  патент 2447420 (10.04.2012)
способ определения содержания загрязнений в жидкости, текущей в трубопроводе -  патент 2431130 (10.10.2011)
Наверх