склерометр

Классы МПК:G01N3/46 когда инденторы осуществляют царапающее движение 
Автор(ы):, , ,
Патентообладатель(и):Государственная академия нефти и газа им.И.М.Губкина,
Новомосковский институт Российского химико-технологического университета им.Д.И.Менделеева
Приоритеты:
подача заявки:
1998-06-30
публикация патента:

Склерометр предназначен для использования в измерительной технике, преимущественно при определении трибологических характеристик материалов методом царапания. Корпус установлен на основании. В верхней части корпуса размещен предметный столик для образца. Маятник установлен в корпусе на оси. На верхнем конце штока маятника закреплен индентор. Имеются фиксатор положения образца, пусковой и стопорный узлы. Склерометр снабжен узлом перемещения образца к индентору и измерителем перемещения образца. Для крепления узла и образца в предметном столике выполнен осевой канал. Измеритель выполнен в виде установленной с возможностью перемещения на нижней торцевой поверхности предметного столика подпружиненной пластины, связанной с индикатором перемещения. В радиальном канале в нижней части столика размещен фиксатор положения образца в виде упорной пластины. Участок штока под осью маятника выполнен в виде упругого элемента, на котором установлены тензорезисторы. Обеспечивается повышение точности моделирования трибологических испытаний и достоверность определения износостойкости материалов за счет исключения погрешности, обусловленной непостоянной величиной нормальной составляющей усилия царапания на контакте индентор - образец. 5 з.п. ф-лы, 3 ил.
Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

1. Склерометр, содержащий установленный на основании корпус, в верхней части которого размещен предметный столик для образца, фиксатор положения образца, маятник, установленный в корпусе на оси, на верхнем конце штока которого закреплен индентор, пусковой и стопорный узлы, отличающийся тем, что он снабжен узлом перемещения образца к индентору, установленным в верхней части столика, и измерителем продольно-осевого перемещения образца.

2. Склерометр по п.1, отличающийся тем, что измеритель продольно-осевого перемещения образца выполнен в виде установленной с возможностью осевого перемещения на нижней торцевой поверхности предметного столика пластины, связанной с индикатором перемещения.

3. Склерометр по п.2, отличающийся тем, что пластина подпружинена относительно нижней торцевой поверхности предметного столика.

4. Склерометр по п. 1, отличающийся тем, что в предметном столике выполнен осевой канал для размещения в нем образца и исполнительного элемента узла перемещения.

5. Склерометр по п.1, отличающийся тем, что участок штока под осью маятника выполнен в виде упругого элемента, на котором установлены тензорезисторы.

6. Склерометр по п.1, отличающийся тем, что фиксатор положения образца размещен в выполненном в нижней части столика радиальном канале и выполнен в виде упорной пластины, контактирующей с одной стороны с боковой поверхностью образца, а с другой с прижимным винтом.

Описание изобретения к патенту

Изобретение относится к измерительной технике и может быть использовано при определении трибологических характеристик материалов методом царапания.

Известна конструкция маятникового склерометра, включающая корпус, столик для крепления образцов, маятник с индентором, спусковое и стопорное устройства, втулку с закрепленным упругим элементом и тензометрическими датчиками [см., авторское свидетельство СССР N 1226148, G 01 N 3/46, 1982].

Недостаток известной конструкции заключается в том, что при склерометрических испытаниях, вследствие того, что нормальная составляющая силы скрайбирования на контакте индентор-образец не выдерживается постоянной, снижается точность моделирования трибологических испытаний (имеются в виду испытания на изнашивание при трении скольжении по абразиву).

Наиболее близким по технической сущности является склерометр, содержащий основание, маятник с закрепленным индентором в верхней части, пусковое и стопорное устройства, предметный столик с прижимным болтом [Тененбаум М.М. Склерометры для изучения сопротивления царапанию и их применение. В кн.: Склерометрия. - М.: Наука, 1968, с. 124].

Недостаток известной конструкции заключается в том, что испытание на царапание различных материалов проводят при условии постоянства глубины царапины (геометрическое нормирование) для всех материалов, в результате чего нормальная составляющая силы царапания непостоянна, и следствием чего является снижение точности моделирования испытаний на изнашивание и соответственно достоверности определения трибологических характеристик материалов.

Задачей изобретения является повышение достоверности определения трибологических характеристик материалов за счет исключения погрешности, обусловленной непостоянной величиной нормальной составляющей усилия царапания на контакте индентор- образец.

Поставленная задача достигается тем, что склерометр, содержащий установленный на основании корпус, в верхней части которого размещен предметный столик для образца, фиксатор положения образца, маятник, установленный в корпусе на оси, на верхнем конце штока которого закреплен индентор, пусковой и стопорный узлы, согласно изобретению снабжен узлом перемещения образца к индентору, установленным в верхней части столика, и измерителем продольно-осевого перемещения образца.

В предпочтительных вариантах:

- измеритель продольно-осевого перемещения образца выполнен в виде установленной с возможностью осевого перемещения на нижней торцевой поверхности предметного столика пластины, связанной с индикатором перемещения;

- пластина подпружинена относительно нижней торцевой поверхности предметного столика;

- в предметном столике выполнен осевой канал для размещения в нем образца и исполнительного элемента узла перемещения;

- участок штока под осью маятника выполнен в виде упругого элемента, на котором установлены тензорезисторы;

- фиксатор положения образца размещен в выполненном в нижней части столика радиальном канале и выполнен в виде упорной пластины, контактирующей с одной стороны с боковой поверхностью образца, а с другой с прижимным винтом.

В дальнейшем изобретение поясняется описанием конкретного варианта его выполнения и сопровождающими чертежами, на которых: на фиг.1 показан общий вид склерометра; на фиг.2 - схема крепления образца в предметном столике; на фиг. 3 - схема крепления образца в предметном столике до начала испытаний при смещении образца.

На основании склерометра 1 установлен корпус 2, в котором закреплен шток маятника 3, представляющий собой двуплечий рычаг с индентором 4 (твердосплавный конус от твердомера Роквелла с углом 120o) в верхней части, упругим элементом 5 с тензорезисторами 6 в нижней, и груз 7. Шток маятника вращается на оси 8, лежащей на двух шариковых подшипниках в корпусе установки (не показаны). Образец 9 закреплен в предметном столике 10 таким образом, что одним торцем упирается в поджатую пружинами 11 пластину 12, а на другой воздействуют узлом перемещения 13, вращая маховик 14. Узел перемещения образца 13 закрепляется во втулке 15. Контроль продольно-осевого перемещения образца совместно с пластиной (см. фиг. 3) осуществляется по индикатору перемещения 16 (например, многооборотный индикатор типа 1МИГ ГОСТ 9696-75). Положение образца в предметном столике фиксируют в радиальном направлении упорной пластиной 17 посредством резьбового соединения прижимного винта 18 и втулки 19. Маятник приводится в движение пусковым устройством 20 и останавливается стопорным устройством 21. Тензорезисторы подключены к тензометрическому усилителю 22 и осциллографу 23.

Единичное царапание индентором (при склерометрических испытаниях) моделирует скольжение единичной абразивной частицы по поверхности материала (или образца материала по абразивной частице при скольжении по закрепленному абразиву). Испытания на изнашивание при скольжении по абразиву проводят в соответствии с ГОСТ 17367-71, при постоянной удельной нагрузке на контакте образец-абразив. Поэтому целесообразно применить условие проведения испытаний при постоянной нагрузке на контакте, к испытаниям на царапание (склерометрическим). При склерометрических испытаниях сила царапания (сила скрайбирования) разделяется на две составляющие Rсклерометр, патент № 2141106 и Rn. Составляющая Rсклерометр, патент № 2141106 обеспечивает скольжение индентора вдоль поверхности образца, а Rn - усилие прижатия индентора к поверхности (т.е. это усилие на контакте индентор - образец, которое должно быть постоянным в соответствии с вышеизложенным). Ранее склерометрические испытания проводили без учета постоянства нормальной составляющей силы скрайбирования, поэтому при реализации данного условия будет повышена точность моделирования механизма воздействия частицы при абразивном изнашивании.

Поддержание постоянного значения нормальной составляющей силы царапания при склерометрических испытаниях осуществляется посредством получения постоянной глубины лунки царапины в среднем сечении для определенной величины твердости материала. Для этого предварительно по эмпирической формуле рассчитывают значение глубины царапины, которая должна получиться в результате единичного царапания при заданном значении нагрузки (нормальной составляющей силы царапания) Rn=const и соответствующей твердости материала HRC для каждого образца:

склерометр, патент № 2141106

где hрасч. - расчетная глубина лунки царапины;

HRC - твердость материала;

Rn - нормальная составляющая силы царапания.

Регулировку глубины царапины h осуществляют изменением расстояния между индентором и торцем образца, причем перемещение образца (продольное) на величину склерометр, патент № 2141106 обеспечивают вращением маховика 14 узла перемещения образца 13 (см. фиг. 3). Принимается, что минимальное расчетное значение ожидаемой глубины лунки - h0 будет соответствовать склерометр, патент № 21411060 = 0. Для остальных образцов величину перемещения рассчитывают как разность расчетного значения hрасч и h0:

склерометр, патент № 2141106 = hрасч.-h0.

При этом величину последней устанавливают до начала царапания по шкале индикатора перемещения 16 (типа 1МИГ ГОСТ 9696-75).

В связи со сложностью и низкой точностью измерения глубины царапины h измеряют ширину лунки царапины b0 с помощью микроскопа (например, МИМ-7), т. к. известно, что при царапании коническим индентором с углом при вершине 120o, глубина и ширина лунки связаны между собой соотношением:

h=0,289 b0

Маятниковый склерометр работает следующим образом.

Образец 9 устанавливают в предметный столик 10, и вращая маховик 14, перемещают образец посредством узла перемещения 13 в продольно-осевом направлении до соприкосновения нижней торцевой поверхности с индентором 4, которое определяют визуально слабым покачиванием штока маятника 3. Далее устанавливают стрелку индикатора перемещения 16 (типа 1МИГ ГОСТ 9696-75) в положение "0" (см. фиг. 2) и отводят шток маятника 3 из положения равновесия до фиксирования в пусковом устройстве 20. Вращая маховик 14, обеспечивают продольно-осевое перемещение образца 9 (в случае, если величина склерометр, патент № 2141106 > склерометр, патент № 21411060 ), при этом пластина 12 перемещается вместе с образцом на величину склерометр, патент № 2141106, которая определяется по отклонению стрелки индикатора перемещения 16 (типа 1МИГ ГОСТ 9696-75) (см. фиг. 3) и соответствует ожидаемой глубине лунки царапины h для материала твердости HRC (некоторая величина) при постоянном значении нормальной составляющей силы царапания Rn=const. Для фиксирования образца в этом положении закручивают прижимной винт 18 и прижимают боковую поверхность образца пластиной 17. Маятник 3 приводится в движение пусковым устройством 20, совершает рабочий ход, во время которого индентор 4 царапает торец образца 9 (см. фиг. 3) и останавливается стопорным устройством 21. Одновременно с пуском маятника 3 включается измерительная тензометрическая аппаратура: усилитель 22 и осциллограф 23. При сопротивлении материала образца 9 передвижению индентора 4 деформируется, формируется упругий элемент 5 штока маятника, тензорезисторы 6 регистрируют величину деформации как тангенциальную составляющую силы царапания Rсклерометр, патент № 2141106 (максимальное значение силы на осциллограмме соответствует требуемой глубине лунки h в среднем сечении). Сигнал тензорезисторов 6 усиливается тензометрическим усилителем 22 и записывается на осциллографе 23. После остановки маятника 3 стопорным устройством 21 образец 9 извлекают из предметного столика 10 и на микроскопе (МИМ-7) измеряют характерные размеры царапины: ширину лунки царапины b0 и ширину пластически деформированной зоны b*.

Расчет показателей трибологических свойств производится по значениям максимальной тангенциальной составляющей силы царапания Rсклерометр, патент № 2141106, ширины лунки b0 и пластически деформированной зоны b*. Под трибологическими характеристиками понимаются коэффициент трения, износостойкость и др.

Коэффициент трения при царапании рассчитывается по формуле

склерометр, патент № 2141106

где (Rсклерометр, патент № 2141106)max - максимальное значение тангенциальной составляющей силы царапания.

Износостойкость рассчитывают по комплексу локальных и объемных механических характеристик:

И = A1HV+A2склерометр, патент № 2141106в+A3склерометр, патент № 21411060,2+A4Eпд+A5E*+A6склерометр, патент № 2141106*+A7склерометр, патент № 2141106+A8склерометр, патент № 2141106.

где A1 - A8 - коэффициенты регрессии; HV - твердость по Виккерсу; склерометр, патент № 2141106в - предел прочности; склерометр, патент № 21411060,2 - предел текучести; склерометр, патент № 2141106 - относительное сужение; склерометр, патент № 2141106 - относительное удлинение; Eпд - энергоемкость при пластическом деформировании; E* - локальная энергоемкость; склерометр, патент № 2141106* - напряжение при царапании; склерометр, патент № 2141106 - коэффициент локальной пластичности.

При этом E* - локальная энергоемкость; склерометр, патент № 2141106* - напряжение при царапании; склерометр, патент № 2141106 - коэффициент локальной пластичности рассчитываются по результатам склерометрических испытаний по формулам:

- коэффициент локальной пластичности

склерометр, патент № 2141106 = b*/b0;

- напряжение при царапании

склерометр, патент № 2141106* = (Rсклерометр, патент № 2141106)max/(b0)2

- локальная энергоемкость

E* = 3,24(Rсклерометр, патент № 2141106)max/(b*)2.

Технический результат изобретения состоит в том, что при царапании (скрайбировании) силовое нормирование (Rn=const) обеспечивает более точное моделирование механизмов воздействия индентора и абразивной частицы на поверхность материала при слерометрических и трибологических испытаниях.

Класс G01N3/46 когда инденторы осуществляют царапающее движение 

способ определения прочностных характеристик материала и устройство для его осуществления -  патент 2499246 (20.11.2013)
определение твердости гальванических покрытий на деталях машиностроения -  патент 2476856 (27.02.2013)
способ оценки энергии активации пластической деформации поверхностного слоя и переносной склерометр для его осуществления -  патент 2475720 (20.02.2013)
устройство для определения твердости материалов методом царапания -  патент 2473881 (27.01.2013)
способ выявления неоднородности распределения механических свойств металла -  патент 2451283 (20.05.2012)
способ неразрушающего контроля прочности металлов в конструкциях -  патент 2433383 (10.11.2011)
устройство для определения твердости материалов методом царапания -  патент 2373515 (20.11.2009)
способ исследования анизотропии материала -  патент 2330260 (27.07.2008)
способ оценки энергии активации разрушения материала поверхностного слоя -  патент 2327137 (20.06.2008)
устройство для определения твердости материалов методом царапания -  патент 2308018 (10.10.2007)
Наверх