способ определения коррозионного состояния внутреннего защитного покрытия резервуара

Классы МПК:G01N17/00 Исследование устойчивости материалов к атмосферному или световому воздействию; определение антикоррозионных свойств
Автор(ы):, ,
Патентообладатель(и):Закрытое акционерное общество Производственное предприятие "Волкомпани"
Приоритеты:
подача заявки:
1998-03-17
публикация патента:

Изобретение относится к электрохимическим методам контроля коррозии и может применяться для определения коррозионного состояния нефтегазового и другого оборудования, в частности, для определения коррозионного состояния внутреннего защитного покрытия резервуара. В резервуаре с полимерным покрытием, заполненном рабочей средой, на электроизоляционной подкладке размещают анод протекторной защиты, который соединяют с участком поверхности резервуара, свободным от защитного покрытия, через ключ и амперметр и по величине тока в цепи анод протекторной защиты - резервуар определяют величину износа защитного покрытия резервуара. Использование заявленного способа позволяет упростить и сделать более точным определение коррозионного состояния внутреннего защитного покрытия резервуара. 1 ил.
Рисунок 1

Формула изобретения

Способ определения коррозионного состояния внутреннего защитного покрытия резервуара, заключающийся в соединении анода протекторной зашиты с участком поверхности резервуара без защитного покрытия, подключении к этому соединению амперметра и измерении величины тока, протекающего между резервуаром и анодом протекторной зашиты, отличающийся тем, что анод протекторной защиты размещают внутри резервуара в рабочей среде с исключением возможности его электрического контакта с внутренней поверхностью резервуара, а износ защитного покрытия определяют зависимостью

S=Kспособ определения коррозионного состояния внутреннего   защитного покрытия резервуара, патент № 2138796I,

где S - процент оголившейся от защитного покрытия поверхности;

К - коэффициент, зависящий от проводимости среды и размера анода протекторной защиты;

I - ток в цепи анода протекторной защиты - резервуара, А.

Описание изобретения к патенту

Изобретение относится к электрохимическим методам контроля коррозии и может применяться для контроля коррозионного состояния нефтегазового и другого оборудования, в частности, для определения коррозионного состояния внутреннего защитного покрытия резервуара.

Составной и важнейшей частью вопроса защиты от коррозии является контроль ее работоспособности.

В настоящее время коррозионное состояние внутреннего защитного покрытия резервуара определяется путем его контрольного опорожнения и визуального осмотра (Правила технической эксплуатации резервуаров и инструкции по их ремонту. М. Недра, 1988, стр.74).

Такой способ имеет ряд существенных недостатков:

- сложность опорожнения резервуаров по технологическим причинам и высокая стоимость работ по его очистке для осмотра;

- предписываемая периодичность осмотра, составляющая 1 раз в 2 года, недостаточна ввиду высокой вероятности потери защитных свойств в период между осмотрами;

- возможность оценить лишь видимые повреждения (отслоения) покрытия; при этом остаются незафиксированными подпленочная коррозия, поры и микротрещины в покрытии.

Наиболее близким по технической сущности к заявляемому техническому решению является способ определения коррозионного состояния заглубленного частично в грунт металлического объекта, снабженного антикоррозионным покрытием и защитным протектором, заключающийся в размещении анода протекторной защиты в грунте, соединении металлически чистого места объекта с анодом протекторной защиты, подключении в это соединение амперметра и измерении тока, протекающего между объектом и анодом протекторной защиты (ЕПВ, з. N 0350475, МКИ G 01 N 17/00, оп. 03.11.93).

Известный способ не дает возможности определить коррозионное состояние внутреннего защитного покрытия, также он более трудоемкий, т.к. анод протекторной защиты располагают в грунте, а для определения степени потери покрытием защитных свойств необходимо применять калибровку. Результат измерений известным способом зависит от погодных условий, т.к. в зависимости от последних меняется электропроводность грунта, т.е. имеет значительную случайную составляющую. Кроме того, анод протекторной защиты в известном способе несет еще и функцию защиты от коррозии, т.е. он всегда электрически подключен к объекту и постоянно теряет свою массу при коррозионном процессе. Следовательно, трудно сделать количественный вывод о степени коррозии поверхности объекта, а значит, и о степени разрушения защитного покрытия, поскольку величина тока в цепи анод - объект при прочих равных условиях напрямую зависит от массы (площади) протектора.

Задача, положенная в основу заявляемого технического решения, заключается в разработке простого в осуществлении способа определения коррозионного состояния (определения степени потери защитных свойств) внутреннего защитного покрытия резервуара, имеющего постоянную во времени точность измерений независимо от времени его эксплуатации.

Поставленная задача решается следующим образом.

В способе определения коррозионного состояния внутреннего защитного покрытия резервуара, заключающемся в соединении анода протекторной защиты с участком поверхности резервуара без защитного покрытия, подключении к этому соединению амперметра и измерении величины тока, протекающего между резервуаром и анодом протекторной защиты, согласно заявляемому техническому решению, анод протекторной защиты размещают внутри резервуара в рабочей среде с исключением возможности его контакта с внутренней поверхностью резервуара, при этом износ защитного покрытия определяют зависимостью: S = Кспособ определения коррозионного состояния внутреннего   защитного покрытия резервуара, патент № 2138796I, где S - процент оголившейся от защитного покрытия поверхности; I - ток в цепи анод протекторной защиты - резервуар; К - коэффициент, зависящий от электропроводимости среды, размера и химического состава анода протекторной защиты.

Анод протекторной защиты можно разместить внутри резервуара на электроизолированных от корпуса резервуара креплениях в рабочей среде или подвесить в рабочей среде в непосредственной близости от контролируемой поверхности. Анодом протекторной защиты является серийный протектор.

Для нефтепромысловых резервуаров коррозионные процессы протекают в пластовых минерализованных водах, отличающихся постоянством солевого состава и, следовательно, постоянной проводимостью. Поэтому результаты измерений тока в цепи анод протекторной защиты - резервуар имеют постоянную во времени точность. Кроме того, результаты измерений по заявленному способу не зависят от погодных условий и времени года. Т.к. анод протекторной защиты нормально отключен, а подключается только на момент измерения, то он имеет постоянную массу, поэтому в цепи анод - резервуар протекает одинаковый ток при одинаковой обнажившейся площади внутренней поверхности с течением времени, что позволяет однозначно толковать результаты измерений с течением времени. По экспериментально установленной линейной зависимости между током в цепи анод - резервуар и площадью обнажившейся поверхности можно с определенной точностью определять по величине тока процент износа покрытия, включая поры, микротрещины и подпленочную коррозию.

Наличие отличительных от прототипа существенных признаков позволяет признать заявляемый способ новым.

Из уровня техники не выявлены решения, которые имели бы признаки, совпадающие с отличительными признаками заявляемого способа, поэтому последний отвечает условию изобретательского уровня.

Возможность использования заявляемого способа в промышленности позволяет сделать вывод о его соответствии критерию "промышленная применимость".

На чертеже представлена схема, реализующая заявляемый способ.

В резервуаре 1 с внутренним защитным покрытием 2, заполненном рабочей средой 3, размещен на электроизоляционной подкладке 4 анод протекторной защиты 5 в виде серийно выпускаемого протектора, соединенный с участком 6 резервуара через переключатель 7 и амперметр 8.

Коррозионное состояние внутреннего защитного покрытия определяют следующим образом: замыкают переключатель 7, измеряют ток и по величине тока в цепи анод протекторной защиты - резервуар определяют величину износа защитного покрытия 2 резервуара 1 из зависимости: S = Kспособ определения коррозионного состояния внутреннего   защитного покрытия резервуара, патент № 2138796I.

Класс G01N17/00 Исследование устойчивости материалов к атмосферному или световому воздействию; определение антикоррозионных свойств

способ определения коррозионного состояния подземной части железобетонных опор -  патент 2528585 (20.09.2014)
способ прогнозирования долговечности промышленных противокоррозионных лакокрасочных покрытий для металлических поверхностей -  патент 2520164 (20.06.2014)
портативная лабораторно-полевая дождевальная установка -  патент 2519789 (20.06.2014)
способ контроля стойкости трубных сталей против коррозионного растрескивания под напряжением -  патент 2515174 (10.05.2014)
способ определения плотности дефектов поверхности оптической детали -  патент 2515119 (10.05.2014)
устройство для контроля проникновения локальной коррозии в металлические конструкции -  патент 2510496 (27.03.2014)
способ прогнозирования аварийного технического состояния трубопровода канализационной системы -  патент 2508535 (27.02.2014)
способ оценки стойкости сварных изделий из низкоуглеродистых сталей к коррозионному растрескиванию под напряжением -  патент 2506564 (10.02.2014)
способ оценки стойкости стальных изделий против локальной коррозии -  патент 2504772 (20.01.2014)
установка для коррозионных испытаний -  патент 2502981 (27.12.2013)
Наверх