композиционный материал на основе алюминиевого сплава и способ его получения

Классы МПК:C22C1/10 сплавы с неметаллическими составляющими
C22C21/00 Сплавы на основе алюминия
Автор(ы):, , , , , , ,
Патентообладатель(и):Институт металлургии и материаловедения им.А.А.Байкова РАН
Приоритеты:
подача заявки:
1998-05-27
публикация патента:

Литой композиционный материал на основе термически упрочняемого алюминиевого сплава содержит алюминиевый сплав и упрочнители: включения интерметаллидных фаз состава Аl3Х, где Х - Ti, Zr, V, Hf c размером фаз композиционный материал на основе алюминиевого сплава и   способ его получения, патент № 213677420 мкм N= 5-15 об. %, дискретные керамические частицы с средним размером частиц, не превышающим 28 мкм, - (30-N) об.% и выделения упрочняющих фаз при дисперсионном твердении 7-10 об.%. В качестве дискретных керамических упрочнителей материал может содержать частицы TiC, ZrC, В4С, SiC, Аl2О3, ZrO2, BN, TiN. Способ получения литого композиционного материала включает механическое замешивание дискретных керамических частиц в алюминиевый расплав, долегирование расплава добавлением композиционной лигатуры, содержащей элементы, образующие интерметаллидные фазы Аl3Х, где Х - Ti, Zr, V, Hf, последующее перемешивание расплава, его жидкую штамповку и последующее дисперсионное твердение сплава. 2 с. и 1 з.п.ф-лы, 1 табл.
Рисунок 1

Формула изобретения

1. Литой композиционный материал на основе термически упрочняемого алюминиевого сплава, содержащий армирующие дискретные керамические частицы и выделения упрочняющих фаз при дисперсионном твердении сплава, отличающийся тем, что он дополнительно содержит включения интерметаллидных фаз состава Al3X, где X - Ti, Zr, V, Hf с размером фаз композиционный материал на основе алюминиевого сплава и   способ его получения, патент № 2136774 20 мкм при следующем содержании упрочнителей, об. %: включения интерметаллидных фаз N = 5 - 15, дискретные керамические частицы -(30-N), выделения упрочняющих фаз при дисперсионном твердении 7 - 10, при этом средний размер дискретных керамических частиц не превышает 28 мкм.

2. Материал по п.1, отличающийся тем, что в качестве дискретных керамических упрочнителей он содержит частицы TiC, ZrC, B4C, SiC, Al2O3, ZrO2, BN, TiN.

3. Способ получения литого композиционного материала на основе термически упрочняемого алюминиевого сплава, включающий механическое замешивание дискретных керамических частиц в алюминиевый расплав и дисперсионное твердение сплава, отличающийся тем, что после замешивания расплав долегируют добавлением композиционной лигатуры, содержащей элементы, образующие интерметаллидные фазы Al3X, где X - Ti, Zr, V, Hf , затем расплав перемешивают, осуществляют жидкую штамповку и последующее дисперсионное твердение сплава.

Описание изобретения к патенту

Изобретение относится к области создания новых материалов для деталей машиностроения, к которым предъявляют требования низкого удельного веса в сочетании с высокой контактной долговечностью. Например, одной из актуальных задач транспортного авиастроения является снижение веса устройств для механизации напольного перемещения грузов, что может быть достигнуто за счет замены опорных элементов (шаров, роликов) из сталей на таковые из более легких материалов. Исходя из условий работы (динамические нагрузки, температурные колебания, изотропия механических свойств) опорные элементы могут быть изготовлены из литых композиционных материалов (КМ) на базе легких сплавов, в которых создается гетерогенная структура, обеспечивающая высокие параметры упругости в зоне контактного нагружения при сохранении удовлетворительного уровня вязкости за счет непрерывности пластичной матричной фазы [1].

Известен КМ с высокой контактной долговечностью для деталей подшипников качения, изготовленный из сплавов алюминия или титана, на поверхность которого электролитически нанесено покрытие состава Ni - 2-7% P с твердостью HV композиционный материал на основе алюминиевого сплава и   способ его получения, патент № 2136774 500 и толщиной композиционный материал на основе алюминиевого сплава и   способ его получения, патент № 2136774 100 мкм [2]. Однако покрытие наносят только на детали готовой формы, что сужает области применения КМ; при недостаточном сцеплении с подложкой покрытие может разрушаться хрупко вследствие пластической деформации подложки; то же может происходить при динамическом нагружении.

Другим решением задачи повышения контактной долговечности легких сплавов может быть упрочнение за счет дисперсионного твердения или армирования матриц высокопрочными керамическими частицами.

Однако, согласно [3], лучшие высокопрочные литейные алюминиевые сплавы даже после упрочняющих термических обработок имеют такие механические свойства, которые не гарантируют отсутствие пластических деформаций в зоне контакта (максимальная твердость НВ не выше 120 кг/мм2). Армирование матрицы из легких сплавов керамическими частицами в количествах, позволяющих получить литые КМ, например, методом механического замешивания частиц в расплав, и не приводящих к катастрофическому снижению вязкостных свойств (обычно не более 30-35 об.%), также не обеспечивает необходимого повышения прочности и твердости КМ [4].

Введение в алюминиевую матрицу богатых алюминием интерметаллидных фаз Al3 (V, Zr, Hf, Ti) также не дает существенного прироста прочности и твердости КМ, что объясняют малым размерным несоответствием решеток и низкой межфазной энергией интерметаллидных фаз и матрицы [5].

Наиболее близким аналогом (прототипом) к предлагаемому изобретению является дисперсионно-твердеющий алюминиевый сплав 8090 (Al-Li-Cu-Mg-Zr), упрочненный дискретными частицами карбида кремния (15 об.%) с проведением последующей термической обработки на старение [6]. Таким образом обеспечивается двухуровневое упрочнение матрицы (дискретное армирование керамическими частицами + дисперсионное твердение), что выражается в повышении твердости КМ по сравнению с матрицей по крайней мере на 25%.

Для решения технической задачи получения КМ на основе алюминиевого сплава с высокой контактной долговечностью предлагается литой композиционный материал на основе термически упрочняемой алюминиевой матрицы, в котором предусмотрено упрочнение трех уровней:

1) упрочнение за счет образования при кристаллизации расплава включений интерметаллидных фаз состава Al3X, где X = Ti, Zr, V, Hf, с размером включений композиционный материал на основе алюминиевого сплава и   способ его получения, патент № 2136774 20 мкм и объемной долей композиционный материал на основе алюминиевого сплава и   способ его получения, патент № 2136774 V , где N=5-15 об.%;

2) упрочнение за счет введения в матрицу дискретных высокомодульных, высокопрочных керамических частиц (TiC, ZrC, В4C, SiC, Al2O3, ZrO2, BN, TiN) со средним размером частиц не более 28 мкм и объемной долей Vp = (30-N)oб.%, где N - объемная доля включений интерметаллидных фаз;

3) дисперсионное твердение KM при проведении термической обработки по режиму старения матричного сплава, при этом объемная доля упрочняющих фаз 7-10 об.%.

Упрочнение матрицы дискретными керамическими частицами осуществляется при механическом замешивании частиц в матричный расплав. Для упрочнения матрицы интерметаллидными фазами проводят долегирование расплава, в который уже замешаны керамические частицы, композиционной лигатурой, в состав которой введены элементы, образующие интерметаллид Al3X, с последующим перемешиванием композиционной смеси для равномерного распределения упрочнителей.

Комбинация в алюминиевой матрице равномерно распределенных упрочняющих частиц разного масштаба и природы, у которых отличаются модули упругости, коэффициенты термического расширения, уровни связи с матрицей, обеспечивает повышение контактной долговечности при сохранении высоких вязкостных свойств КМ.

Пример. Композиционный материал с матрицей из сплава Д16 (3,8- 4,9% Cu - 1,2-1,8% Mg - 0,3-0,9% Mn - Al - остальное), содержащий 15 об.% включений интерметаллида Al3Ti со средним размером 15 мкм и 15 об.% частиц карбида кремния SiC со средним размером 28 мкм, получен механическим замешиванием частиц SiC в расплав сплава Д16, нагретый до 720oC; для образования в матрице равномерно распределенных интерметаллидных фаз Al3Ti проведено долегирование расплава добавлением нагретой до 820oC лигатуры, в состав которой входит титан, с последующим перемешиванием расплава в течение 30 сек. Образцы КМ, полученные жидкой штамповкой, подвергали термической обработке по режиму: отжиг на твердый раствор при 490oC в течение 1 часа, закалка в воду, старение при температуре 195oC. Оценка контактной прочности предлагаемого материала после термообработок по сравнению с матрицей и другими вариантами КМ (объемная доля частиц SiC и интерметаллидных фаз 10, 15 и 30%, средний размер частиц SiC 3 и 40 мкм) проведена посредством измерения твердости по Бринеллю на приборе типа ТШ при нагрузке 250 кг, диаметр шара 5 мм (см. таблицу в конце описания).

Видно, что применение в качестве матрицы КМ дисперсионно-твердеющего сплава Д16, упрочненного частицами карбида кремния (15 об.% SiC28) и интерметаллидными частицами (15 об.% Al3Ti) в сочетании с проведением термической обработки на старение позволяет повысить контактную прочность КМ примерно на 35% по сравнению с матрицей.

Литература

1. Еременко В. И., Копьев И.М., Чернышова Т.А. Анализ возможностей повышения контактной прочности опорных шаров, изготовленных из дисперсно-армированных металлокомпозитов. Физика и химия обработки материалов. 1998, N1, с.87-93.

2. Композиционный материал для изделий машиностроения с высокой контактной долговечностью. Заявка 4-26792, Япония, МКИ5 C 22 D 5/38, 3/12.

З.Строганов Г.Б. Высокопрочные литейные алюминиевые сплавы. М.: Металлургия, 1985, 216 с.

4. Cast composite material with high-silicon aluminum matrix alloy and its applications. Пат. 5394928 США, МКИ6 B 22 D 19/14/ Hanumond Donald E., Skibo Michael D., Alcan International LTD. N 940265. Заявл. 2.9.92. Опубл. 7.3.95; НКИ 164/97.

5.Chuang M.S., Tu G.C. The effect of Ti-addition on the Li2 precipitates of Rapidly-Solidified Al-Cr-Zr-alloys. Scr. Met. et Mater. 1994, V.31, N9. P.1259-1264.

6. Vaidya R. U., Xu Z.R., Li X., Chawla K.K, Zurek A.K. Ageing response and mechanical properties of a SiCp/Al-Li (8090) composite. J.of Mater. Sci, 1994, V.29, p.2944-2950.

Класс C22C1/10 сплавы с неметаллическими составляющими

композиционный электроконтактный материал на основе меди и способ его получения -  патент 2525882 (20.08.2014)
литой композиционный материал на основе алюминия и способ его получения -  патент 2516679 (20.05.2014)
способ модифицирования чугуна -  патент 2515158 (10.05.2014)
способ модифицирования чугуна с шаровидным графитом -  патент 2500824 (10.12.2013)
способ получения композиционного материала на основе сплава алюминий-магний с содержанием нанодисперсного оксида циркония -  патент 2499849 (27.11.2013)
литой композиционный сплав и способ его получения -  патент 2492261 (10.09.2013)
способ упрочнения легких сплавов -  патент 2487186 (10.07.2013)
способ изготовления изделий из гранулируемых жаропрочных никелевых сплавов -  патент 2477670 (20.03.2013)
композиционный материал для электротехнических изделий -  патент 2466204 (10.11.2012)
способ получения порошковой композиции на основе карбосилицида титана для ионно-плазменных покрытий -  патент 2458168 (10.08.2012)

Класс C22C21/00 Сплавы на основе алюминия

способ изготовления листов и плит из алюминиевых сплавов -  патент 2525953 (20.08.2014)
усовершенствованные алюминиево-медные сплавы, содержащие ванадий -  патент 2524288 (27.07.2014)
алюминиевый сплав для прецизионного точения серии аа 6ххх -  патент 2522413 (10.07.2014)
алюминиевая лента с высоким содержанием марганца и магния -  патент 2522242 (10.07.2014)
способ производства осесимметричных штамповок типа крышка диаметром до 200 мм из высокопрочных алюминиевых сплавов al - zn - mg - cu, легированных скандием и цирконием -  патент 2516680 (20.05.2014)
al-mg-si-полоса для применений с высокими требованиями к формуемости -  патент 2516214 (20.05.2014)
электрохимический способ получения лигатурных алюминий-циркониевых сплавов -  патент 2515730 (20.05.2014)
высокопрочный деформируемый сплав на основе алюминия системы al-zn-mg-cu пониженной плотности и изделие, выполненное из него -  патент 2514748 (10.05.2014)
деформируемый термически неупрочняемый сплав на основе алюминия -  патент 2513492 (20.04.2014)
способ получения композиционного материала -  патент 2509818 (20.03.2014)
Наверх