бисциклопентадиенилдиеновые комплексные соединения, способ полимеризации олефинов
Классы МПК: | C07F17/00 Металлоцены C08F10/00 Гомополимеры или сополимеры ненасыщенных алифатических углеводородов, содержащих только одну углерод-углеродную двойную связь C08F4/643 компонент, отнесенный к рубрике 4/64, с металлом или соединением, отнесенным к рубрике 4/44, кроме алюминийорганического соединения C08F210/08 бутены |
Автор(ы): | Фрэнсис Дж.Тиммерс (US), Дэвид Д.Девоур (US), Джеймс С.Стивенс (US), Роберт К.Розен (US), Джэссон Т.Пэттон (US), Дэвид Р.Нейтемер (US) |
Патентообладатель(и): | Дзе Дау Кемикал Компани (US) |
Приоритеты: |
подача заявки:
1995-07-14 публикация патента:
27.08.1999 |
Анса-бисциклопентадиенильные производные комплексов переходных металлов IV группы, в которых металл находится в формальней степени окисления +2 или +4, получают путем контактирования бисциклопентадиенил галогенидного, гидрокарбильного (углеводородного радикала), гидрокарбилоксидного или амидного комплекса металла IV группы с сопряженным диеном, возможно в присутствии восстанавливающего агента. Особенным является то, что анса-рацемат диастереомера селективно можно выделить и может быть вновь превращен в галогенидную форму, если это необходимо. Комплексы металлов могут быть использованы в качестве катализаторов для полимеризации олефинов, диолефинов и/или ацетиленненасыщенных мономеров. 3 с. и 11 з.п. ф-лы.
Формула изобретения
1. Комплекс металла, соответствующий формуле
в которой M - титан, цирконий или гафний в формальной степени окисления +2 или +4;
R" и R"" в каждом случае независимо представляют собой водород или гидрокарбил (углеводородный радикал), причем указанные R" и R"" имеют вплоть до 20 неводородных атомов каждый, или соседние R" группы и/или соседние R"" группы (когда R" и R"" не являются атомом водорода) вместе образуют двухвалентное производное, таким образом образуя конденсированную циклическую систему;
(R"""2E)x является 1,2-этандиилом, 2,2-пропандиилом или диметилсиланом;
D является стабильным, сопряженным диеном, возможно замещенным одной или более гидрокарбильными (углеводородный радикал) группами, причем указанный D имеет от 4 до 40 неводородных атомов. 2. Комплекс металла по п.1, в котором M является цирконием в формальной степени окисления +2. 3. Комплекс металла по п.1, в котором

и

являются независимо циклопентадиенилом, 1-инденилом, тетрагидро-1-инденилом, 2-метил-1-инденилом, 2-метил-4-фенил-1-инденилом или 1-флуоренилом. 4. Комплекс металла по п.1, в котором D является 1,4-дифенил-1,3-бутадиеном или 1-фенил-1,3-пентадиеном. 5. Анса рацемат-комплекса металла, соответствующий формуле

в которой M является титаном, цирконием или графнием в формальной степени окисления +2 или +4;
R в каждом случае независимо является водородом или гидрокарбильной (углеводородный радикал) группой, имеющей до 20 атомов углерода, или соседние R группы вместе образуют конденсированную циклическую систему;
(R"""2E)x является 1,2-этандиилом, 2,2-пропандиилом или диметилсиланом;
D является стабильным, сопряженным диеном, возможно замещенным одной или более гидрокарбильными (углеводородный радикал) группами, причем указанный D имеет от 4 до 40 неводородных атомов. 6. Комплекс металла по п.5, в котором M является цирконием в формальной степени окисления +2. 7. Комплекс металла по п.5, в котором

является 1-инденилом, тетрагидро-1-инденилом, 2-метил-1-инденилом и 2-метил-4-фенил-1-инденилом. 8. Комплекс металла по п.5, в котором D является 1,4-дифенил-1,3-бутадиеном или 1-фенил-1,3-пентадиеном. 9. Способ полимеризации олефинов, включающий контактирование по крайней мере одного олефина, имеющего от 2 до 10 атомов углерода в условиях полимеризации с комплексом металла и сокатализатором, отличающийся тем, что комплекс металла является комплексом металла согласно любому одному из пп.1 - 8 формулы изобретения. 10. Способ по п.9, отличающийся тем, что олефин является пропиленом. 11. Способ по п.9, отличающийся тем, что полимеризуют комбинацию этилена с одним или более мономерами, выбранными из группы, состоящей из пропилена, 1-бутена, 1-гексена, 1-октена, стирола, этилиденнорборнена, пиперилена и 1,4-гексадиена. 12. Способ по п.9, отличающийся тем, что используют нанесенный катализатор. 13. Способ по п.9, отличающийся тем, что является газофазной полимеризацией. 14. Способ по п.9, отличающийся тем, что включает повторный цикл использования конденсированных мономеров или растворителя. Приоритет по пунктам:
02.08.94 - по пп.1 - 10, 12 и 13;
07.06.95 - по пп.11 и 14.
Описание изобретения к патенту
Изобретение относится к некоторым бисциклопентадиенилсодержащим комплексным соединениям переходных металлов группы 4, обладающим диеновыми лигандами, и катализаторам полимеризации, полученным из них. В одном варианте данное изобретение относится к комплексным соединениям бисциклопентадиенил- и замещенный бис(циклопентадиенил)титана, циркония или гафния, обладающим диеновыми лигандами, в которых металл находится в формальном окислительном состоянии +2 или +4 которые можно активировать для образования катализаторов полимеризации олефинов, и способам получения таких комплексных соединений и катализаторов. Получение и характеристика некоторых диеновых комплексных соединений бисциклопентадиенил(Cp2)циркония и гафния описываются в следующих ссылках: Yasuda, et al., Organometallics, 1982, 1, 388 (Yasuda I); Yasuda, et al., Acc. Chem. Res., 1985, 18, 120 (Yasuda II); Erker, et al., Adv. Organomet. Chem. 1985, 24, 1 (Erker I); Erker et al., Chem. Ber., 1994, 127, 805 (erker II) и US-A-5198401. Последняя ссылка описывает использование Cp2Zr(диен), где Zr находится в формальном окислительном состоянии +4, в качестве катализатора полимеризации олефинов в комбинации с сокатализаторами, боратами аммония. Бисциклопентадиенилсодержащие комплексные соединения переходных металлов группы 4, в которых металл находится в формальном окислительном состоянии +4, и катализаторы полимеризации олефинов, образованные из таких комплексных соединений комбинацией с активатором, например алюмоксаном или боратом аммония, известны в данной области. Так, например, патент США N 3 242 099 описывает образование катализаторов полимеризации олефинов комбинацией бисциклопентадиенилметаллдигалогенидов с алюмоксаном. Патент США N 5 198 401 описывает бисциклопентадиенилсодержащие комплексные соединения тетравалентных переходных металлов группы 4 и катализаторы полимеризации олефинов, полученные превращением таких комплексных соединений в катионную форму в комбинации с некоординирующим анионом. В частности, предпочтительные катализаторы получают комбинацией солей, боратов аммония, с комплексными соединениями бисциклопентадиенилтитана, циркония или гафния. Среди многих описанных подходящих комплексных соединений имеются комплексные соединения(циклопентадиенил)-циркония, содержащие диеновый лиганд, присоединенный к переходному металлу через
CpCp"MD,
где M является титаном, цирконием или гафнием в формальном окислительном состоянии +2 или +4;
Cp и Cp" являются замещенными или незамещенными циклопентадиенильными группами, соединенными

D представляет собой стабильный, сопряженный диен, возможно замещенный одной или несколькими гидрокарбильными группами, силильными группами, гидрокарбилсилильными группами, силилгидрокарбильными группами или их смесями, причем этот D имеет от 4 вплоть до 40 неводородных атомов и образует









1) комплексного соединения формулы:
CpCp"M*X или CpCp"M**X2,
где Cp и Cp" имеют предварительно определенные значения;
M* является титаном, цирконием или гафнием в формальном окислительном состоянии +3;
M** является титаном, цирконием или гафнием в формальном окислительном состоянии +4; и
X является C1-6 гидрокарбильной, галогенидной, C1-6 гидрокарбилокси или ди-C1-6 гидрокарбиламидной группой;
2) диена, соответствующего формуле, D;
3) возможно, когда X является C1-6гидрокарбилом, в противном случае, обязательно, восстановителя. Необычно, что данный способ, когда используют диастереомерные смеси рац- и мезо-изомеров металлоценов, может привести к образованию только комплексного соединения рац-диен-металл. Далее в соответствии с данным изобретением предлагаются катализаторы для полимеризации способных к полимеризации присоединением мономеров, содержащие комбинацию одного или нескольких указанных выше комплексных соединений металлов и одного или более активирующих сокатализаторов. Для образования новых катализаторов данного изобретения предпочтительны комплексные соединения металлов, где металл находится в формальном окислительном состоянии +2. В заключение в соответствии с данным изобретением предлагается способ полимеризации, содержащий контактирование одного или более способных к полимеризации присоединением мономеров, в частности одного или нескольких
















По терминологии такие






больше чем или равна -0,15


































где M является титаном, цирконием или гафнием, предпочтительно цирконием или гафнием, в формальном окислительном состоянии +2 или +4. R" и R"" в каждом случае независимо выбирают из группы, состоящей из водорода, гидрокарбила, силила, гермила, циано, галогена и их комбинаций, причем каждый из этих R" и R"" имеет вплоть до 20 неводородных атомов, или соcедние группы R" и/или соседние группы R"" (когда R" и R"" не являются водородом, галогеном или циано) вместе образуют двухвалентное производное (то есть гидрокарбадиильную, силадиильную или гермадиильную группу) или один R" и один R"" вместе (когда группы R" и R"" не являются водородом, галогеном или циано) соединяются, образуя двухвалентный радикал (то есть гидрокарбадиильную, силадиильную или гермадиильную группу), соединяющий две замещенные циклопентадиенильные группы; и
D является сопряженным диеном, имеющим от 4 до 30 неводородных атомов, который образует

































































































где M, D, E, R""" и x имеют ранее определенные значения и R" и R"" в каждом случае независимо выбирают из группы, состоящей из водорода, гиброкарбила, силила, гермила, циано, галогена и их комбинаций, причем каждый из этих R" и R"" имеет вплоть до 20 неводородных атомов, или соседние группы R" и/или соседние группы R"" (когда R" и R"" не являются водородом, галогеном или циано) вместе образуют двухвалентное производное (то есть гидрокарбадиильную, силадиильную или гермадиильную группу) или один R" и один R"" вместе (когда группы R" и R"" не являются водородом, галогеном или циано) соединяются, образуя двухвалентный радикал (то есть гидрокарбадиильную, силадиильную или гермадиильную группу), соединяющий две циклопентадиенильные группы. Такие мостиковые структуры особенно подходят для получения полимеров, имеющих стереорегулярную молекулярную структуру. В такой способности их предпочтительно, чтобы комплексное соединение было несимметричным или обладало хиральной, стереоустойчивой структурой. Примерами первого типа являются соединения, обладающие разными делокализованными








(1) смеси рац- и мезо-диастереомеров соединения, имеющего формулу

где M является титаном, цирконием или гафнием;
X является галогеном, C1-6гидрокарбилом, C1-6гидрокарбилокси или ди-C1-6гидрокарбиламидо;
E, R""" и x имеют ранее определенные значения и R" и R"" в каждом случае независимо выбирают из группы, состоящей из водорода, гидрокарбила, силила, гермила, циано, галогена и их комбинаций, причем каждый их этих R" и R"" имеет вплоть до 20 неводородных атомов, или соседние группы R" и/или соседние группы R"" (когда R" и R"" не являются водородом, галогеном или циано) вместе образуют двухвалентное производное (то есть гидрокарбадиильную, силадиильную или гермадиильную группу) или один R" и один R"" вместе (когда группы R" и R"" не являются водородом, галогеном или циано) соединяются, образуя двухвалентный радикал (то есть гидрокарбадиильную, силадиильную или гермадиильную группу), соединяющий две циклопентадиенильные группы,
2) C4-40сопряженного диена, D, и
3) возможно, когда X является C1-6гидрокарбилом, в противном случае, обязательно, восстановителя; и
выделение получаемого рац-диастереомера формулы

Предпочтительными исходными комплексными соединениями являются диастереомерные смеси бис(инденил)металлоценов, соответствующих формуле

мезо-бис(инденил)
металлоцен
или

рац-бис(инденил)
металлоцен
или гидрированных производных их,
где M, X, E, x и R""" имеют ранее определенные значения и
R в каждом случае независимо выбирают из группы, состоящей из водорода, гидрокарбила, силила, гермила и их комбинаций, причем каждый из этих R имеет вплоть до 20 неводородных атомов, или соседние группы R на каждой отдельной инденильной системе вместе образуют двухвалентное производное (то есть гидрокарбадиильную, силадиильную или гермадиильную группу), таким образом образуя дополнительное конденсированное ядро. Примеры подходящих соединений-предшественников находят в W. Spaleck, et al., Organomet., 13, 954-963 (1994). Комплексные соединения делают каталитически активными комбинацией их с одним или более активирующими сокатализаторами, путем использования способа активации или комбинации их. Подходящие активирующие сокатализаторы для использования здесь включают полимерные или олигомерные алюмоксаны, особенно метилалюмоксан, модифицированный триизобутилалюминием метилалюмоксан или диизобутилалюмоксан; сильные кислоты Льюиса (термин "сильная кислота Льюиса", используемый здесь, определяется как тригидрокарбилзамещенные соединения элементов группы 13, особенно три(гидрокарбил)алюминиевые или три(гидрокарбил)борные соединения и галогенированные производные их, имеющие от 1 до 10 атомов углерода в каждой гидрокарбильной (углеводородной) или галогенированной гидрокарбильной группе, более особенно перфторированные три(арил)борные соединения и наиболее особенно трис(пентафторфенил)боран; аддукты галогенированных три(C1-10гидрокарбил)борных соединений с аминами, фосфинами, алифатическими спиртами и меркаптанами, особенно такие аддукты перфторированных три(арил)борных соединений; неполимерные, ионные, совместимые, некоординирующие, активирующие соединения (включая использование таких соединений в окислительных условиях); электролиз в объеме (объясняемый ниже более подробно); и комбинации вышеупомянутых активирующих сокатализаторов и способов. Вышеупомянутые активирующие сокатализаторы и активирующие способы ранее изучали в отношении разных комплексных соединений металлов в следующих ссылках: EP-A-277003, US-A-5153157, US-A-5064802, EP-A-468651, EP-A-520732 и WQ 93/03250. Особенно желательными активирующими сокатализаторами являются комбинации сильных кислот Льюиса, особенно комбинация триалкилалюминиевого соединения, имеющего от 1 до 4 атомов углерода в каждой алкильной группе, и галогенированного три(гидрокарбил)борного соединения, имеющего от 1 до 10 атомов углерода в каждой гидрокарбильной группе, особенно трис(пентафторфенил)борана; следующие комбинации смесей таких сильных кислот Льюиса с полимерным или олигомерным алюмоксаном и комбинации одной сильной кислоты Льюиса, особенно трис(пентафторфенил)борана, с полимерным или олигомерным алюмоксаном. Было найдено, что при использовании в качестве сокатализаторов таких сильных кислот Льюиса для полимеризации более высших


a) комплексное соединение металла, соответствующее формуле
CpCp"MD,
где M, Cp, Cp" и D имеют ранее определенные значения,
b) кислоту Льюиса и
c) этилен или водород;
причем количество этилена или водорода по меньшей мере равно количеству, необходимому для активации каталитической системы для полимеризации C3 или более высшего


где

A- является некоординирующим, совместимым анионом. Примеры катионов G+ включают катионы тетрагидрокарбилзамещенного аммония или фосфония, имеющие вплоть до 40 неводородных атомов. Предпочтительным катионом является тетра-н-бутиламмониевый катион. Во время активации комплексных соединений данного изобретения электролизом в объеме катион фонового электролита двигается к противоэлектроду и A- мигрирует к рабочему электроду, чтобы стать анионом получаемого окисленного продукта. Либо растворитель, либо катион фонового электролита восстанавливается у противоэлектрода в равное молярное количество количеством окисленного комплексного соединения металла, образованного у рабочего электрода. Предпочтительными фоновыми электролитами являются тетрагидрокарбиламмониевые соли тетракис(перфторарил)боратов, имеющих от 1 до 10 атомов углерода в каждой гидрокарбильной группе, особенно тетракис(пентафторфенил)борат тетра-н-бутиламмония. Подходящие соединения, полезные в качестве сокатализатора в одном воплощении данного изобретения, содержат катион, который является кислотой Бренстеда, способной отдавать протон, и инертный, совместимый, некоординирующий анион A-. Предпочтительны анионы, содержащие один координационный комплекс, содержащий несущее заряд металлическое или металлоидное ядро, которые способны уравновешивать заряд активных типов катализаторов (катион металла), который образуется, когда смешивают два компонента. Этот анион должен быть также достаточно лабильным, чтобы замещаться олефиновыми, диолефиновыми и ацетиленовыми ненасыщенными соединениями или другими нейтральными основаниями Льюиса, например простыми эфирами или нитрилами. Подходящие металлоиды включают, но не ограничиваются ими, бор, фосфор и кремний. Соединения, содержащие анионы, которые содержат координационные комплексы, содержащие один атом металла или металлоида, являются, конечно, хорошо известными соединениями и многие, в частности такие соединения содержащие один атом бора в анионной части, являются коммерчески доступными. Такие сокатализаторы предпочтительно можно представить следующей общей формулой:
(L*-H)+d(Ad-),
где L* является нейтральным основанием Льюиса;
(L*-H)+ является кислотой Бренстеда;
Ad- является некоординирующим, совместимым анионом, имеющим заряд d-, и
d является целым числом от 1 до 3. Более предпочтительно Ad соответствует формуле
(M"k+Qn)d-,
где k является целым числом от 1 до 3;
n является целым числом от 2 до 6;
n-k=d;
M" является элементом, выбранным из группы 13 периодической таблицы элементов и
Q в каждом случае независимо выбирают из водородного, диалкиламидного, галогенидного, алкоксидного, арилоксидного, гидрокарбильного и галогензамещенного гидрокарбильного радикалов, причем этот Q имеет вплоть до 20 атомов углерода, при условии, что не более чем в одном случае Q является галогенидом. В более предпочтительном воплощении d является 1, то есть противоион имеет один отрицательный заряд и соответствует формуле A-. Активирующие сокатализаторы, содержащие бор, которые в частности полезны при приготовлении катализаторов данного изобретения, можно представить следующей общей формулой:
(L*-H)+(BQ"4)-,
где L* имеет предварительно определенные значения;
B является бором в валентном состоянии 3 и
Q является фторированной C1-20 гидрокарбильной группой. Наиболее предпочтительно, когда Q" в каждом случае является фторированной арильной группой, особенно пентафторфенильной группой. Иллюстративными, но не ограничивающими, примерами соединений бора, которые можно использовать в качестве активирующих сокатализаторов при получении улучшенных катализаторов данного изобретения, являются тризамещенные аммониевые соли, например
тетрафенилборат трметиламмония, тетрафенилборат триэтиламмония, тетрафенилборат трипропиламмония, тетрафенилборат три(н-бутил)аммония, тетрафенилборат три(трет-бутил)аммония, тетрафенилборат N,N-диметиланилития, тетрафенилборат N, N-диметил-(2,4,6-триметиланилиния), тетракис(пентафторфенил) борат триметиламмония, тетракис(пентафторфенил)борат триэтиламмония, тетракис(пентафторфенил)борат трипропиламмония, тетракис(пентафторфенил)борат три(н-бутил)аммония, тетракис(пентафторфенил)борат три(втор-бутил)аммония, тетракис(пентафторфенил)борат N,N-диметиланилиния, тетракис(пентафторфенил)борат N, N-диэтиланилиния, тетракис(пентафторфенил)борат N,N-диметил-(2,4,6-триметиланилиния), тетракис-(2,3,4,6-тетрафторфенил)борат триметиламмония, тетракис-(2,3,4,6-тетрафторфенил)борат триэтиламмония, тетракис-(2,3,4,6-тетрафторфенил)борат трипропиламмония, тетракис-(2,3,4,6-тетрафторфенил)борат три(н-бутил)аммония, тетракис-(2,3,4,6-тетрафторфенил)борат диметил(трет-бутил)аммония, тетракис-(2,3,4,6-тетрафторфенил)борат N, N-диэтиланилиния и тетракис-(2,3,4,6-тетрафторфенил)борат N,N-диметил-(2,4,6-триметиланилиния). Диалкиламмониевые соли, например
тетракис(пентафторфенил)борат ди(изопропил)аммония и тетракис(пентафторфенил)борат дициклогексиламмония; и
тризамещенные фосфониевые соли, например
тетракис(пентафторфенил)борат трифенилфосфония, тетракис(пентафторфенил)борат три(о-толил)фосфония и тетракис(пента-фторфенил)борат три-(2,6-диметилфенил)фосфония. Предпочтительными катионами [L*-H] * являются N, N-диметиланилиний и трибутиламмоний. Другой подходящий ионообразующий активирующий сокатализатор содержит соль катионного окислителя и некоординирующего, совместимого аниона, представленной формулой
(Oxe+)d (Ad-)e,
где Oxe+ является катионным окислителем, имеющим заряд e+;
e является целым числом от 1 до 3 и
AD- и d имеют предварительно определенные значения. Примеры катионных окислителей включают: ферроцен, гидрокарбилзамещенный ферроцен, Ag+ или Pb+2. Предпочтительными воплощениями Ad- являются анионы, предварительно определенные в отношении содержащих кислоту Бренстеда активирующих сокатализаторов, особенно тетракис(пентафторфенил)борат. Другой подходящий ионообразующий, активирующий сокатализатор содержит соединение, которое является солью карбенийиона и некоординирующего, совместимого аниона, представленное формулой

где

A- имеет предварительно определенные значения. Предпочтительным карбений-ионом является тритил-катион, то есть трифенилкарбений. Другой подходящий ионоообразующий, активирующий сокатализатор содержит соединение, которое является солью иона силилия и некоординирующего, совместимого аниона, представленной формулой
R#3Si(X#)+sA-,
где R# является C1-20 гидрокарбилом,
s является 0 или 1,
X#/ является нейтральным основанием Льюиса и
A- имеет предварительно определенные значения. Предпочтительными активирующими сокатализаторами типа силилиевых солей являются тетракиспентафторфенилборат триметилсилилия, тетракиспентафторфенилборат триэтилсилилия и их замещенные простыми эфирами аддукты. Силилиевые соли были предварительно по родовому признаку описаны в J. Chem Soc. Chem. Comm. , 1993, 383-384, а также Lambert, J.B., et al., Organometallics, 1994, 13, 2430-2443. Вышеупомянутые способы активации и ионообразующие сокатализаторы предпочтительно используют также в комбинации с три(гидрокарбил)алюминиевым соединением, имеющим 1-4 атома углерода в каждой гидрокарбильной группе, олигомерным или полимерным алюмоксановым соединением или смесью три(гидрокарбил)алюминиевого соединения, имеющего от 1 до 4 атомов углерода в каждой гидрокарбильной группе, и полимерным или олигомерным алюмоксаном. Используемое молярное отношение катализатор/сокатализатор предпочтительно варьирует от 1:10000 до 100:1, более предпочтительно от 1:5000 до 10:1, наиболее предпочтительно от 1:1000 до 1:1. В особенно предпочтительном воплощении данного изобретения сокатализатор можно использовать в комбинации с C3-30тригидрокарбилалюминиевым соединением или олигомерным или полимерным алюмоксаном. Можно также использовать смеси активирующих сокатализаторов. Возможно использование этих алюминиевых соединений по причине их полезной способности удалять примеси, например кислород, воду и альдегиды из смеси полимеризации. Предпочтительные алюминиевые соединения включают C2-6триалкилалюминиевые соединения, особенно те, в которых алкильные группы являются этилом, пропилом, изопропилом, н-бутилом, изобутилом, пентилом, неопентилом или изопентилом, и метилалюмоксан, модифицированный метилалюмоксан и диизобутилалюмоксан. Молярное отношение алюминиевого соединения к комплексному соединению металла предпочтительно составляет от 1:10000 до 1000: 1, более предпочтительно от 1:5000 до 100:1, наиболее предпочтительно от 1: 100 до 100:1
Комбинация комплексов CpCp"MD с активирующими сокатализаторами типа сильных кислот Льюиса в предпочтительном воплощении соответствует одной из двух цвиттеринных равновесных структур формулы:

где M является титаном, цирконием или гафнием в формальном окислительном состоянии +4;
Cp и Cp" являются замещенной или незамещенной циклопентадиенильной группой, соединенной

Q в каждом случае независимо выбирают из водородного, диалкиламидного, галогенидного, алкоксидного, арилоксидного, гидрокарбильного и галогензамещенного гидрокарбильного радикалов, причем этот Q имеет вплоть до 20 атомов углерода, при условии, что не более чем в одном случае Q является галогенидом;
R1, R2, R3, R4, R5 и R6 независимо являются водородом, гидрокарбилом, силилом или их комбинациями, причем каждый из этих R1-R6 имеет вплоть до 20 неводородных атомов, и
B является бором в валентном состоянии 3. Предпочтительные цвиттерионные равновесные структуры соответствуют формуле

где R1 R2, R5 и R6 являются водородом:
R3 и R4 являются водородом, C1-4алкилом или фенилом,
M является цирконием в формальном окислительном состоянии +4 и
R" и R"" в каждом случае независимо выбирают из группы, состоящей из водорода, гидрокарбила, силила, гермила, циано, галогена и их комбинаций, причем каждый из этих R" и R"" имеет вплоть до 20 неводородных атомов, или соседние группы R" и/или соседние группы R"" (когда R" и R"" не являются водородом, галогеном или циано) вместе образуют двухвалентное производное (то есть гидрокарбадиильную, силадиильную или гермадиильную группу, которая образует конденсированную циклическую систему) или один R" и один R"" вместе (когда группы R" и R"" не являются водородом, галогеном или циано) соединяются, образуя двухвалентный радикал (то есть гидрокарбадиильную, силадиильную или гермадиильную группу), соединяющий две циклопентадиенильные группы. Наиболее предпочтительными являются равновесные цвиттерионные координационные комплексные соединения металлов, соответствующие формуле

где M является цирконием в формальном окислительном состоянии +4:
R1, R2, R5 и R6 являются водородом;
R3 и R4 являются водородом или метилом: и
R "и R""в каждом случае независимо выбирают из группы, состоящей из водорода, гидрокарбила, силила, гермила, циано, галогена и их комбинаций, причем каждый из этих R" и R"" имеет вплоть до 20 неводородных атомов, или соседние группы R" и/или соседние группы R"" (когда R" и R"" не являются водородом, галогеном или циано) вместе образуют двухвалентное производное (то есть гидрокарбадиильную, силадиильную или гермадиильную группу) или один R" и один R"" вместе (когда группы R" и R"" не являются водородом, галогеном или циано) соединяются, образуя двухвалентный радикал (то есть гидрокарбадиильную, силадиильную или гермадиильную группу), соединяющий две циклопентадиенильные группы. Катализаторы можно использовать для полимеризации этиленовых и/или ацетиленовых ненасыщенных мономеров, имеющих от 2 до 20 атомов углерода, по отдельности или в комбинации. Предпочтительные мономеры выключают C2-12 -



В боксе с инертной атмосферой, снабженном для операций перчатками, смешивают 586 мг (2,01 ммоль) (C5H5)2ZrCl2 и 413 мг (2,00 ммоль) транс, транс-1,4-дифенил-1,3-бутадиена в 90 мл смешанных алканов (Isopar ETM, доступен от Exxon Chemical Inc.). В перемешиваемую суспензию добавляют 1,60 мл 2,5 М н-бутиллития. Смесь сразу становится темно-красной. После перемешивания при 25oC в течение 2 часов смесь нагревают для кипячения с обратным холодильником в течение 3 часов. Теплый раствор фильтруют. Красный твердый остаток экстрагируют согретым толуолом с общим объемом 90 мл. Экстракты фильтруют и объединяют с фильтратом в гексане. Весь объем раствора концентрируют до 40 мл при пониженном давлении. В этой стадии образуется красный осадок. Смесь нагревают до повторного растворения твердого вещества и раствор помещают в морозильник (-25oC). Затем на стеклянной фритте собирают темно-красные кристаллы. После сушки при пониженном давлении получают 210 мг (выход 25 процентов (C5H5)2Zrc (


В боксе с инертной атмосферой, снабженном для операций перчатками, смешивают 586 мг (2,01 ммоль) (C5H5)2ZrCl2 и 2,5 мл (22 ммоль) 2,3-диметил-1,3-бутадиена в 90 мл смешанных алканов. В перемешиваемую смесь добавляют 1,60 мл 2,5 М н-бутиллития. Цвет медленно превращается в красный. После перемешивания в течение 1 часа при 25oC смесь нагревают для кипячения с обратным холодильником в течение 1/2 часа. Нагретый раствор затем фильтруют, используя в качестве вспомогательного фильтровального вещества диатомовую землю марки целитТМ, доступную от Fisher Scientific Inc. Фильтрат концентрируют до 50 мл и темно-красный фильтрат помещают в морозильник (-25oC). Темные кристаллы собирают фильтрованием и сушат при пониженном давлении, получая 234 мг (выход 39 процентов) (C5H5)2Zr(2,3-диметил-1,3-бутадиена, подтверждаемого 1H ЯМР-анализом. Продукт имеет s-цис-конфигурацию диена. Пример 3: Комбинирование кислоты Льюиса с бис(циклопентадиенил)цирконий s-транс (

В боксе с инертной атмосферой, снабженном для операций перчатками, смешивают 8,4 мг (0,020 ммоль) (C5H5)2Zr s-транс (

В боксе с инертной атмосферой, снабженном для операций перчатками, смешивают 5,9 мг (0,0195 ммоль) (C5H5)2Zr-(2,3-диметил-1,3-бутадиена) и 10,0 мг (0,0195 ммоль) B(C6F5)3 в 75 мл бензола-d6 для получения гомогенного раствора. Анализ 1H ЯМР показывал, что смесь совершенно превратилась в цвиттерионное соединение. (C5H5)2Zr+ (CH2CMe= CMeCH2B(C6F5)3) или его



В реактор на два литра загружают 746 г смешанных алканов и 120 г сомономера, 1-октена. Водород добавляют в качестве агента регулирования молекулярной массы путем расширения с перепадом давления из дополнительного резервуара от 300 psig (избыточное давление в фунтах на квадратный дюйм) (2,1 МПа) до 275 psig (1,95 МПа). Реактор нагревают до температуры полимеризации 140oC и насыщают этиленом при 500 psig (3,4 МПа). В дополнительный резервуар для катализатора переносят 5,00 мкмоля комбинации катализатора примера 3 (0,00500 М растворы в толуоле). Полимеризацию инициируют впрыскиванием этого раствора в содержимое реактора. Условия полимеризации поддерживают в течение 10 минут этиленом, поставляемым по потребности при 5000 psi (фунтов на квадратный дюйм) (3,4 МПа). Раствор полимера удаляют из реактора и смешивают с 100 мг противоокислителя типа затрудненного фенола (IrganoxTM 1010, доступный от Ciba Geigy Corp.). Летучие компоненты удаляют из полимера в установке вакуумного сушильного шкафа при 120oC в течение около 20 часов. Выход полимера 16,8 г. Пример 6 - Получение сополимера этилена/пропилена с использованием [бис(циклопентадиенил)цирконий(2,3-диметил- 1,3-бутадиена) и B(C6F5)3. В реактор на два литра загружают 656 г смешанных алканов и 207 г сомономера, пропилена. Водород добавляют путем расширения с перепадом давления из дополнительного резервуара на 75 мл от 300 psig (2,1 МПа) до 275 psig (1,9 МПа). Реактор нагревают до температуры полимеризации 140oC и насыщают этиленом при 500 psi (3,4 МПа). В дополнительный резервуар для катализатора переносят 10 мкмоля [бис(циклопентадиенил)цирконий(2,3-диметил- 1,3-бутадиена) и 10 мкмоля B(C6F5)3 в толуоле. Полимеризацию инициируют впрыскиванием этого раствора в содержимое реактора. Условия полимеризации поддерживают в течение 20 минут этиленом, поставляемым по потребности при 500 psig (3,4 МПа). Реакционную смесь удаляют из реактора и летучие компоненты удаляют из полимера в установке вакуумного сушильного шкафа при 120oC в течение около 20 часов. Получают 21,0 г сополимера этилена/пропилена. Пример 7: Комбинирование (C5H5)2Zr s-транс (

В боксе с инертной атмосферой, снабженном для операций перчатками, 0,043 г (0,010 ммоль) бис-циклопентадиенилцирконий s-транс (


Стандартную Н-ячейку для электролиза, содержащую два электродных резервуара, разделенных тонким стеклянным фильтром, платиновый сетчатый рабочий электрод и противоэлектрод и серебряный электрод сравнения помешают внутри бокса с инертной атмосферой, снабженного для операций перчатками и заполненного аргоном. Каждую половину ячейки наполняют используемым в качестве растворителя 1,2-дифторбензолом (5 мл в рабочем отделении, 4 мл в противоположном отделении) и используемым в качестве фонового электролита тетракис(пентафторфенил)боратом тетра-н-бутиламмония (8 ммоль). Комплексное соединение, бис(циклопентадиенил)Zr s-транс (

В реактор с перемешиванием на 2 л загружают желаемые количества смешанных алканов, используемых в качестве растворителя, и 15 г сомономера, 1-октена. Водород добавляют в качестве агента, регулирующего молекулярную массу, путем расширения при перепаде давления (25



Реактор-автоклав с перемешиванием на 5 л загружают 1850 г безводного гексана через расходомер. Затем в реактор через баллон из нержавеющей стали под давлением до нагревания до 80oC добавляют раствор, содержащий 100 мкмолей модифицированного триизопропилалюминием метилалюмоксана (ММАО, получен от Akzo Corporation) в 10 мл гексана. В этой точке давление реактора повышают до 10 psig (70 кПа) добавлением водорода и затем этилена в количестве, достаточном для достижения общего давления 175 psig (1,21 кПа). Этилен подают непрерывно в реактор при помощи регулятора требуемой подачи на линии. 12,5 мкмоль диенового комплексного соединения примера 1 перемешивают в гексане и затем добавляют в реактор для инициирования полимеризации. Через 30 минут подачу этилена прекращают и реактор вентилируют и охлаждают. Получаемый полиэтилен фильтруют и сушат при 80oC в течение ночи в вакуумном сушильном шкафу. Пример 11: Получение рац-[1,2-этандиилбис(1-инденил)цирконий s-транс (

В боксе с инертной атмосферой, снабженном для операций перчатками, смешивали 837 мг (2,00 ммоль) рац-[1,2-этандиилбис(1-инденил)цирконийдихлорида и 413 мг (2,00 ммоль) транс,-транс-1,4-дифенил-1,3-бутадиена в около 90 мл смешанных алканов. В эту смесь добавляли 1,60 мл 2,5 М бутиллитий в смешанных алканах (4,00 ммоль). Эта смесь сразу становилась темно-красной. После перемешивания при комнатной температуре в течение получаса смесь нагревали для кипячения с обратным холодильником в течение двух с половиной часов. Раствор охлаждали и фильтровали через вспомогательное фильтровальное вещество марки целитТМ. Твердый остаток экстрагировали, используя всего 100 мл толуола. Экстракты фильтровали и фильтраты объединяли. Фильтрат концентрировали до 20 мл при пониженном давлении и концентрат охлаждали до 30oC. Красное твердое вещество собирали на стеклянной фритте. Летучие компоненты удаляли из твердого вещества при пониженном давлении, получая 767 мг красного кристаллического твердого продукта. Идентичность и чистоту этого соединения подтверждали с использованием 1H ЯМР-спектроскопии.


В боксе с инертной атмосферой, снабженном для операций перчатками, 9 мг (около 0,2 ммоль) рац-[бис-1,2-этандиилбис-(1-инденил)цирконий s-транс (

В боксе с инертной атмосферой, снабженном для операций перчатками, 2,01 ммоль (н-бутил-C5H4)2ZrCl2 и 22 ммоль 2,3-диметил-1,3-бутадиена смешивают в 90 мл гексана. В перемешиваемую суспензию добавляют 1,60 мл 2,5 М н-бутиллития. Цвет медленно изменялся в красный. После перемешивания в течение 1 часа при комнатной температуре смесь нагревают для кипячения с обратным холодильником в течение 1/2 часа. Горячий раствор затем фильтруют, используя в качестве вспомогательного фильтровального вещества диатомовую землю. Фильтрат концентрируют до 50 мл и темно-красный фильтрат помещают в морозильник (-25oC). Темные кристаллы собирают фильтрованием и сушат при пониженном давлении, получая (н-бутил-C5H4)2Zr s-цис(2,3-диметил-1,3-бутадиен), строение которого устанавливали на основании 1H ЯМР-анализа. Пример 14: Комбинирование кислоты Льюиса с бис(н-бутилциклопентадиенил)цирконий s-цис(2,3-диметил-1,3-бутадиеном)
В боксе с инертной атмосферой, снабженном для операций перчатками, 0,0195 ммоль (н-бутил-C5H4)2Zr-(2,3-диметил- 1,3-бутадиена) и 0,0195 ммоль B(C6F5)3 смешивают в 0,75 мл бензола-d6, получая гомогенный раствор. Превращение в (н-бутил-C5H4)2Zr+ (CH2CMe=CMeCH2B(C6F5)3) или его

В боксе с инертной атмосферой, снабженном для операций перчатками, 106,6 мг (0,170 ммоль) рац-[1,2-этандиилбис-(1- (2-метил-4-фенил)инденил)цирконийдихлорида и 35,1 мг (0,170 ммоль) транс,транс-1,4-дифенил-1,3-бутадиена смешивали приблизительно в 50 мл толуола. В эту смесь добавляли 0,14 мл 2,5 М бутиллития в смешанных алканах (0,35 ммоль). После перемешивания при около 25oC в течение двух часов смеси цвет смеси превращался из желтого в оранжевый. Смесь нагревали в толуоле (около 80oC) в течение трех часов, в течение этого времени смесь становилась темно-красной. Раствор охлаждали и фильтровали через вспомогательное фильтровальное устройство, являющееся целитомТМ. Летучие компоненты удаляли из твердого продукта при пониженном давлении, получая красный твердый продукт. Его растворяли в 15 смешанных алканов, которые затем удаляли при пониженном давлении. 1H ЯМР-спектроскопия показывала целевой

В реактор периодического действия на 2 л загружали 500 мл смешанных алканов, 75 мл 5-этилиден-1-норборнена и 500 мл сжиженного пропилена. Реактор нагревали до 60oC и насыщали этиленом при 500 psig (3,4 МПа). В сухом боксе с инертной атмосферой смешивали 10 мкмоль 0,005 М раствора рац-[1,1-этандиилбис-(1-(2-метил-4-фенил)инденил)] цирконий (транс, транс-1,4-дифенил-1,3-бутадиена) в толуоле и 10 мкмоль 0,005 М раствора B(C6F5)3 в толуоле и смесь переносили в реактор для инициирования полимеризации. Через 15 минут реактор вентилировали и раствор разгружали из реактора. Раствор полимера смешивали с 100 мг противоокислителя и летучие компоненты удаляли при пониженном давлении для выделения эластичного терполимера этилена/пропилена/этилиденнорборнена. Пример 17: Получение сополимера этилена/пропилена/7-метил-1,6-октадиена
Применяли методику примера 16, за исключением того, что вместо этилиденнорборнена использовали 75 мл 7-метил-1,6-октадиена. После удаления растворителя получали эластичный терполимер этилена/пропилена/7-метил-1,6-октадиена. Пример 18: Получение сополимера этилена/пропилена/пиперилена
Применяли методику примера 16, за исключением того, что вместо этилиденнорборнена использовали 75 мл пиперилена (1,3-пентадиена). После удаления растворителя получали эластичный терполимер этилена/пропилена/пиперилена. Пример 19: Получение изотактического полипропилена
В реактор на два литра загружают 500 мл смешанных алканов и 500 мл сжиженного пропилена. В реактор добавляют этилен (10 мкмоль). Реактор нагревают до 60oC и медленно добавляют комбинацию рац-1,2-[бис(1-инденил)этандиил]цирконий s-транс- (

В боксе с инертной атмосферой, снабженном для операций перчатками, смешивают 5,0 г 2,2-пропандиил(циклопентадиенил-9-флуоренил)цирконийдихлорида (11,56 ммоль) и 0,95 г (2,3-диметил-1,3-бутадиена) (11,56 ммоль) (доступен от Boulder Scientific Inc) в 500 мл толуола. Эту смесь перемешивают и добавляют 9,3 мл 2,5 М н-бутиллития. После перемешивания в течение 2 часов при комнатной температуре смесь фильтруют через воронку из сплавленного стекла. В воронку из сплавленного стекла добавляют толуол и твердый продукт экстрагируют. Общий объем фильтрата концентрируют при пониженном давлении, получая продукт в неочищенной форме. Неочищенный продукт можно очищать перекристаллизацией для получения продукта с более высокой чистотой. Пример 21: Получение синдиотактического полипропилена
В реактор на два литра загружают 500 мл смешанных алканов и 500 мл сжиженного пропилена. В реактор добавляют небольшое количество этилена (0,001 массовых процентов на основе пропилена). Реактор нагревают до 60oC. В сухом боксе с инертной атмосферой 10 мкмоль 2,2-пропандиил(циклопентадиенил-9-флуоренил)цирконий(2,3-диметил-1,3-бутадиена) (0,005 М раствор в толуоле) смешивают с 10 мкмоль B(C6F5)3 (0,005 М раствор в толуоле). Эту смесь медленно добавляют в реактор, чтобы регулировать экзотермическую полимеризацию. После 15 минут полимеризации при 60oC реактор вентилируют и содержимое реактора удаляют. Растворитель удаляют в вакууме и выделяют кристаллический, твердый синдиотактический полипропилен. Пример 22: Получение синдиотактического полипропилена. Применяли по существу методику примера 21, за исключением того, что в реактор не добавляют этилен и каталитическая смесь является комбинацией 10 мкмоль 2,2-пропандиил(циклопентадиенил-9-флуоренил)цирконий(2,3-диметил-1,3- бутадиена с 10 ммоль метилалюмоксана (МАО) (1,0 М раствор в толуоле). Эту смесь добавляют медленно в реактор для регулирования экзотермической полимеризации. После 15 минут полимеризации при 60oC реактор вентилируют и содержимое реактора удаляют. Растворитель удаляют при пониженном давлении и выделяют кристаллический, твердый синдиотактический полипропилен. Пример 23: Получение катализатора на носителе
(a) Получение носителя
Сухой диоксид кремния (2,5 г Davison 948, высушенный при 800oC) суспендируют 10 мл 1,0 М метилалюмоксана (МАО, 1,0 М в толуоле) и смесь перемешивают в течение 30 минут. Суспензию фильтруют и промывают пять раз порциями по 10 мл пентана. Промытую суспензию сушат в вакууме. (b) Получение катализатора на носителе
Бис(н-бутилциклопентадиенил)цирконий s-транс (



Использовали стальной автоклав на 1000 мл с перемешиванием, оборудованный для проведения полимеризации с помощью катализатора Циглера при давлениях вплоть до 250 МПа и температурах вплоть до 300oC. Реакционная система снабжается термопарой и датчиком давления для измерения температуры и давления непрерывно и средством для подачи очищенного этилена, азота, водорода и 1-бутена. Реактор снабжается также средством для непрерывного введения измеренного потока раствора катализатора и средством для быстрого вентилирования и гашения реакции и для сбора полимерного продукта. Катализатор получают смешиванием 564 мг бис(н-бутилциклопентадиенил)цирконий-s-транс- (

Повторяют методику примера 24, за исключением того, что используют МАО и катализатор получают одновременным добавлением эквимолярных количеств 0,005 М растворов бис(н-бутил-циклопентадиенил)цирконий s-транс (


В боксе с инертной атмосферой, снабженном для операций перчатками, смешивали 418,5 мг (1,00 ммоль) [1,2-этандиилбис(1-инденил)цирконийдихлорида (95 процентов рац-формы, 5 процентов мезо-формы, определено 1H-ЯМР-анализом) и 207 мг (1,00 ммоль) транс, транс-1,4-дифенил-1,3-бутадиена приблизительно в 70 мл смешанных алканов. В эту смесь добавляли 0,80 мл 2,5 М бутиллития в смешанных алканах (2,00 ммоль). Смесь сразу становилась темно-красной. После перемешивания при около 25oC в течение получаса смесь нагревали для кипячения с обратным холодильником в течение трех часов. Раствор охлаждали и фильтровали через вспомогательное фильтровальное вещество марки целиттм и фильтрат в смешанных алканах отставляли в сторону. Твердый остаток экстрагировали дважды 30 мл толуола, экстракты фильтровали и фильтраты объединяли. Фильтрат концентрировали до 15 мл при пониженном давлении и концентрат охлаждали до -30oC. Красный твердый продукт собирали на стеклянной фритте. Летучие компоненты удаляли из твердого продукта при пониженном давлении, получая 200 мг красного кристаллического твердого продукта. Идентичность и чистоту соединения подтверждали с помощью 1H-ЯМР-спектроскопии, было найдено, что оно не содержит любой мезо-изомер. Фильтрат в толуоле объединяли с фильтратом в смешанных алканах и летучие компоненты удаляли при пониженном давлении. Твердый продукт промывали быстро пентаном при -30oC. После сушки при пониженном давлении получали красный порошок. 1H-ЯМР-анализ показал, что продукт был рац-[1,2-этандиилбис(1-инделил)цирконий(транс,транс-1,4-дифенил-1,3- бутадиеном), загрязненным некоторым количеством свободного диена, но не мезо-продуктом
Пример 27: Получение рац-[1,2-этандиилбис(1-инделил)цирконий-дихлорида из рац-[1,2-этандиилбис(1-инденил)цирконий(транс, транс-1,4-дифенил-1,3-бутадиена) и HCl
Концентрированный раствор рац-[1.2-этандиилбис(1-инденил)цирконий(транс, транс-1,4-дифенил-1,3-бутадиена) получали в C6D6 и получали 1H-ЯМР-спектр этого раствора. В этот темно-красный раствор добавляли 0,1 мл 12 М водного HCl. Смесь быстро становилась ярко-желтой и на стенках пробирки с образцом образовались желтые микрокристаллы. 1H-ЯМР-анализ показывал, что образец был рац-[1,2-этандиилбис(1-инденил)цирконий дихлоридом без присутствия мезо-изомера. Растворитель декатировали от желтых кристаллов, которые промывали 0,75 мл CDCl3, который также декантировали от оставшегося твердого материала. В твердый материал добавляли C6D6 и получали 1H-ЯМР-спектр. Спектр показывал, что этот материал должен быть рац-[1,2-этандиилбис(1-инденил)цирконийдихлоридом при отсутствии большинства органических фрагментов. Пример 28: Получение рац-[1,2-этандиилбис(1-тетрагидроинденил)цирконий (транс,транс-1,4-дифенил-1,3-бутадиена)
В боксе с инертной атмосферой, снабженной для операций перчатками, смешивали 213 мг (0,500 ммоль) рац-[1,2-этандиил-бис(1-тетрагидроинденил)цирконийдихлорида и 103 мг (0,500 ммоль) транс, транс-1,4-дифенил-1,3-бутадиена в приблизительно 35 мл смешанных алканов. В эту смесь добавляли 0,40 мл 2,5 М бутиллития в смешанных алканах (1,0 ммоль). Эта смесь постепенно становилась темно-красной. После перемешивания при около 25oC в течение получаса смесь нагревали для кипячения с обратным холодильником в течение получаса. Раствор охлаждали и фильтровали через вспомогательное фильтровальное вещество марки целитТМ. Остаток промывали три раза порциями по 10 мл смешанных алканов. Твердый остаток экстрагировали толуолом (три раза по 12 мл каждый раз), экстракты фильтровали и фильтраты объединяли. Летучие компоненты удаляли из фильтрата при пониженном давлении, получая 98,0 мг красного кристаллического твердого соединения. Идентичность и чистоту соединения подтверждали с помощью 1H-ЯМР-спектроскопии.

В боксе с инертной атмосферой, снабженном для операций перчатками, смешивали 505,7 мг (1,00 ммоль) рац-[1,2-этандиил-бис(1-инденил)гафнийдихлорида и 206,3 мг (1,00 ммоль), транс,транс-1,4-дифенил-1,3-бутадиена в около 70 мл смешанных алканов. В эту смесь добавляли 0,80 мл 2,5 М бутиллития в смешанных алканах (2,0 ммоль). Эта смесь постепенно становилась темно-оранжевой. После перемешивания при около 25oC в течение пяти часов смесь фильтровали через вспомогательное фильтровальное вещество марки целитТМ и фильтрат концентрировали при пониженном давлении до получения оранжевого порошка. 1H ЯМР-анализ в C6D6 показывал, что твердый продукт является смесью комплексного соединения дибутилгафния и свободного диена. Этот твердый продукт растворяли в 50 мл толуола и нагревали для кипячения с обратным холодильником в течение двух часов, в течение этого времени раствор становился темно-красным. Летучие компоненты удаляли при пониженном давлении. Твердый остаток промывали смешанными алканами. Твердый остаток сушили при пониженном давлении, получая 217 мг красного порошка. Продукт идентифицировали с помощью 1H ЯМР-спектроскопии.

В боксе с инертной атмосферой, снабженном для операций перчатками, смешивали 433 мг (1,00 ммоль) [2,2-пропандиил(1-флуоренил)(циклопентадиенил)цирконийдихлорида (предварительно перекристаллизованный из кипящего толуола) и 206 мг (1,00 ммоль) транс,транс-1,4-дифенил-1,3-бутадиена в около 60 мл смешанных алканов. В эту смесь добавляли 0,80 мл 2,5 М бутиллития в смешанных алканах (2,0 ммоль). Эта смесь сразу становилась темно-красной. После перемешивания при комнатной температуре в течение получаса смесь фильтровали через вспомогательное фильтровальное вещество марки целитТМ. Фильтрат концентрировали до 15 мл при пониженном давлении и охлаждали до -30oC. Кристаллическое темно-красное твердое соединение собирали на стеклянной фритте и промывали один раз холодными смешанными алканами, получая 226 мг твердого соединения. Идентичность и чистоту соединения подтверждали с использованием 1H ЯМР-спектроскопии.

Все растворители и жидкие мономеры разбрызгивают азотом и вместе с любыми используемыми газами пропускают через активированный оксид алюминия до использования. Реактор на два литра загружают используемыми в качестве растворителя смешанными алканами, и возможно, сомономером, являющимся 1-октеном или стиролом. Мономер пропилен, если его используют, измеряют с помощью газового расходомера марки MicroMotionТМ, который показывает общее количество поданного мономера. Водород, если желательно, добавляют путем расширения с перепадом давления из дополнительного резервуара на 75 мл от 300 psig (2070 кПа) до более низкого давления, обычно 275 psig (1890 кПа). Затем добавляют количественные порции этилена, используя расходомер. При использовании этиленового мономера по потребности содержимое реактора сначала нагревают в пределах 5oC температуры полимеризации и насыщают этиленом, обычно при 500 psig (3450 кПа). Катализатор и сокатализатор смешивают в толуоле и переносят в дополнительный резервуар для катализатора. Когда содержимое реактора находится при желаемой рабочей температуре, полимеризацию инициируют впрыскиванием раствора катализатора в содержимое реактора. Температуру полимеризации поддерживают внешним стойким нагреванием и внутренним охлаждением в течение желаемого рабочего времени. Давление поддерживают на уровне 500 psig (3450 кПа), если этилен подают по потребности. Изредка в содержимое реактора вышеупомянутым образом добавляют дополнительный раствор катализатора и сокатализатора. После прохождения желаемого рабочего времени содержимое реактора удаляют и смешивают с раствором применяемого в качестве противоокислителя затрудненного фенола. Полимер выделяют удалением летучих компонентов из реакционной смеси в вакуумном сушильном шкафу при температуре от 120 до 130oC в течение около 20 часов. Пример 31: Получение изотактического полипропилена с использованием рац-[1,2-этандиилбис(1-инденил)] цирконий (транс, -транс-1,4-дифенил-1,3-бутадиена) с B(C6D6)3
Применяли общую методику, используя 719 г смешанных алканов,

Повторяли по существу условия полимеризации примера 36, за исключением того, что в содержимое реактора вместо водорода добавляли небольшое количество этилена. Количества используемых ингредиентов были следующие: 723 г растворителя, 3 г этилена, 200 г пропиленового мономера, температура полимеризации 70oC и рабочее время 30 минут. Катализатор приготовляют смешиванием 2 мкмоль рац-[1,2-этандиилбис(1-инденил)]цирконий(транс,-транс-1,4-дифенил-1,3- бутадиена) и 2 мкмоль B(C6F5)3 в толуоле. Получали 94,2 г изотактического сополимера полипропилен/этилен (73 процентов m pentad, определено 13C ЯМР-анализом). Пример 33: Получение изотактического полипропилена с использованием рац-[1,2-этандиилбис(1-инденил)] цирконий(транс, -транс-1,4-дифенил-1,3- бутадиена) и тетракис(пентафторфенил)бората N, N-диметиланилиния, [Me2NHPh] +[B(C6F5)4]-
Применяли общую методику, используя 715 г смешанных алканов,

Применяли общую методику, используя 840 г смешанных алканов,

Применяли общую методику (за исключением указанного ниже), используя 723 г растворителя, 100



Применяли общую методику, используя 715 г смешанных алканов, 25





Применяли общую методику полимеризации, используя 734 г растворителя, 26










К суспензии [бис)2-метил-4-фенил-1-инденил)-диметилсилан]ZrCl2 (0,107 г, 0,170 ммоль) и 1,4-дифенил-1,3-бутадиена (0,035 г, 0,17 ммоль) в 50 мл толуола добавляли 2,5 M n-BuLi (0,14 мл, 0,35 ммоль). Смесь желтого цвета очень постепенно приобретала более темный оранжевый оттенок. После перемешивания в течение двух часов при комнатной температуре смесь подогрели и нагревали при 80oC в течение трех часов. В этот период времени смесь приобретала темно-красный цвет. Охлажденную смесь фильтровали через фильтрующее устройство - диатомитовую землю, а быстро испаряющиеся вещества удаляли из фильтрата при пониженном давлении. Из остатка приготовили суспензию в гексане, и быстро испаряющиеся соединения удаляли при пониженном давлении. Путем повторного растворения в горячем толуоле, выпаривания растворителя и перекристаллизации из гексана при -25oC был получен относительно чистый комплекс. Твердое вещество, которое образовалось, выделяли путем тщательного декантирования супернатанта и осушивания при пониженном давлении. 1H ЯМР спектр этого материала показывает, что в дополнение к желаемому комплексу, в материале имеют место небольшое количество непрореагировавшего диена и остаточное количество растворителя. Пример 46 - Синтез рацемата-[бис-(2-метил-1-инденил)диметил-силан]цирконий(1,4-дифенил-1,3- бутадиена)

К суспензии [бис(2-метил-1-инденил)диметилсилан] ZrCl2 (0,100 г, 0,210 ммоль) и 1,4-дифенил-1,3-бутадиена (0,043 г, 0,21 ммоль) в 40 мл октана добавляли 2,5 M n-BuLi (0,17 мл, 0,43 ммоль). После перемешивания в течение двух часов при комнатной температуре смесь нагревали при кипении (с обратным холодильником, устройством для конденсации паров) в течение семи часов. Быстро испаряющиеся вещества удаляли из теплой смеси при пониженном давлении. Твердый остаток экстрагировали гексаном, а экстракт фильтровали через диатомитовую землю до обесцвечивания. Фильтрат выпаривали до 5 мл при пониженном давлении. Полученный осадок был собран на стеклянном фильтре. Твердое вещество красного цвета было осушено при пониженном давлении с тем, чтобы обеспечить 0,026 г желаемого компонента в виде порошка. Пример 47 - Синтез рацемата-[бис-(1-инденил)-1,2-этан]титан-(1,4-дифенил-1,3-бутадиена)

К смеси TiCl4

Класс C08F10/00 Гомополимеры или сополимеры ненасыщенных алифатических углеводородов, содержащих только одну углерод-углеродную двойную связь
Класс C08F4/643 компонент, отнесенный к рубрике 4/64, с металлом или соединением, отнесенным к рубрике 4/44, кроме алюминийорганического соединения