способ получения покрытия на подложке (варианты)
Классы МПК: | C25D15/02 электролитическим способом в сочетании с электрофорезом C23C28/00 Способы получения по крайней мере двух совмещенных покрытий либо способами, не предусмотренными в одной из основных групп 2/00 |
Автор(ы): | Джон Фостер (GB) |
Патентообладатель(и): | Праксайр СТ Текнолоджи, Инк. (US) |
Приоритеты: |
подача заявки:
1995-07-24 публикация патента:
10.08.1999 |
Способ получения покрытия на подложке включает нанесение покрытия путем электролитического осаждения при плотности тока менее чем 3 мА/см2 металлической матрицы М1 из ванны, содержащей частицы CrAlM2 для соосаждения частиц с матрицей, где М1 представляет по крайней мере один элемент, выбранный из группы, состоящей из Ni, Со и Fe, а М2 - по крайней мере один элемент, выбранный из группы, состоящей из Y, Si, Ti, Hf, Та, Nb, Mn, Pt и редкоземельных элементов. При осаждении предпочтительно образуется слой толщиной менее 50 мкм, и осаждение осуществляют при загрузке ванны менее чем 40 г частиц/л. Техническим результатом является повышение сопротивления окислению и термической усталости. 3 с. и 21 з.п.ф-лы, 4 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4
Формула изобретения
1. Способ получения покрытия на подложке, включающий нанесение покрытия путем электролитического осаждения металлической матрицы М1 из ванны, содержащей частицы CrAlM2, для того, чтобы соосадить частицы с матрицей, в котором M1 является по крайней мере одним элементом, выбранным из группы, состоящей из Ni, Co, и Fe, а M2 является по крайней мере одним элементом, выбранным из группы, состоящей из Y, Si, Ti, Hf, Ta, Nb, Mn, Pt и редкоземельных элементов, отличающийся тем, что осаждение осуществляют при плотности тока менее чем 3 мА/см2. 2. Способ по п.1, отличающийся тем, что частицы в ванне включают порошок с размером частиц менее 15 мкм. 3. Способ по любому из пп.1 и 2, отличающийся тем, что во время осаждения металлической матрицы и частиц осаждают монослой или двойной слой. 4. Способ по любому из пп.1-3, отличающийся тем, что дополнительно осуществляют алюминирование, хромирование или силицирование соосажденного материала. 5. Способ по п.4, отличающийся тем, что дополнительно наносят слой платины толщиной от 5 до 10 мкм на верхнюю поверхность осажденного материала. 6. Способ по любому из пп.1-5, отличающийся тем, что осуществляют соосаждение на подложку слоя металлической матрицы и частиц толщиной 15 мкм, алюминирование, хромирование или силицирование соосажденного материала и тепловую обработку в вакууме, причем если тепловую обработку соосажденного материала проводят перед алюминированием, хромированием или силицированием, то ведут ее при 1000-1100oC в течение 1 ч, а если тепловую обработку соосажденного материала проводят после алюминирования, хромирования или силицирования, то ведут ее при температуре около 1100oC в течение приблизительно 1 ч с получением толщины покрывающего материала на подложке менее 75 мкм. 7. Способ по любому из пп.1-6, отличающийся тем, что дополнительно осаждают тепловой барьерный слой в качестве конечного слоя после осаждения. 8. Способ по любому из пп.1-7, отличающийся тем, что подложку выбирают из группы, состоящей из вала газовой турбины, обода, диска, составляющих элементов камеры сгорания, лопасти статора, лопатки рабочего колеса турбины, направляющей лопатки, профиля крыла лопатки газовой турбины, хвостового участка лопатки газовой турбины и наружного обода лопатки газовой турбины. 9. Способ получения покрытия на подложке, включающий нанесение покрытия путем электролитического осаждения металлической матрицы M1 из ванны, содержащей частицы CrAlM2, для того, чтобы соосадить частицы с матрицей в форме слоя, в котором M1 является по крайней мере одним элементом, выбранным из группы, состоящей из Ni, Co и Fe, а M2 является по крайней мере одним элементом, выбранным из группы, состоящей из Y, Si, Ti, Hf, Ta, Nb, Mn, Pt и редкоземельных элементов, отличающийся тем, что осаждение осуществляют при плотности тока менее чем 5 мА/см2, а толщина слоя составляет менее чем 50 мкм. 10. Способ по п.9, отличающийся тем, что частицы в ванне включают порошок с размером частиц менее 15 мкм. 11. Способ по любому из пп.9 и 10, отличающийся тем, что во время осаждения металлической матрицы и частиц осаждают монослой или двойной слой. 12. Способ по любому из пп.9-11, отличающийся тем, что дополнительно осуществляют алюминирование, хромирование или силицирование соосажденного материала. 13. Способ по п. 12, отличающийся тем, что дополнительно наносят слой платины толщиной от 5 до 10 мкм на верхнюю поверхность осажденного материала. 14. Способ по любому из пп.9-13, отличающийся тем, что осуществляют соосаждение на подложку слоя металлической матрицы и частиц толщиной 15 мкм, алюминирование, хромирование или силицирование соосажденного материала и тепловую обработку в вакууме, причем если тепловую обработку соосажденного материала проводят перед алюминированием, хромированием или силицированием, то ведут ее при 1000-1100oC в течение 1 ч, а если тепловую обработку соосажденного материала проводят после алюминирования, хромирования или силицирования, то ведут ее при температуре около 1100oC в течение приблизительно 1 ч с получением толщины покрывающего материала на подложке менее 75 мкм. 15. Способ по любому из пп.9-14, отличающийся тем, что дополнительно осаждают тепловой барьерный слой в качестве конечного слоя после осаждения. 16. Способ по любому из пп.9-15, отличающийся тем, что подложку выбирают из группы, состоящей из вала газовой турбины, обода, диска, составляющих элементов камеры сгорания, лопасти статора, лопатки рабочего колеса турбины, направляющей лопатки, профиля крыла лопатки газовой турбины, хвостового участка лопатки газовой турбины и наружного обода лопатки газовой турбины. 17. Способ получения покрытия на подложке, включающий нанесение покрытия путем электролитического осаждения металлической матрицы M1 из ванны, содержащей частицы CrAlM2, для того, чтобы соосадить частицы с матрицей, в котором M1 является по крайней мере одним элементом, выбранным из группы, состоящей из Ni, Co и Fe, а M2 является по крайней мере одним элементом, выбранным из группы, состоящей из Y, Si, Ti, Hf, Ta, Nb, Mn, Pt и редкоземельных элементов, отличающийся тем, что осаждение осуществляют при плотности тока менее чем 5 мА/см2 и при загрузке ванны менее чем 40 г частиц/л. 18. Способ по п.17, отличающийся тем, что частицы в ванне включают порошок с размером частиц менее 15 мкм. 19. Способ по любому из пп.17 и 18, отличающийся тем, что во время осаждения металлической матрицы и частиц осаждают монослой или двойной слой. 20. Способ по любому из пп.17-19, отличающийся тем, что дополнительно осуществляют алюминирование, хромирование или силицирование соосажденного материала. 21. Способ по п. 20, отличающийся тем, что дополнительно наносят слой платины толщиной от 50 до 10 мкм на верхнюю поверхность осажденного материала. 22. Способ по любому из пп.17-21, отличающийся тем, что осуществляют соосаждение на подложку слоя металлической матрицы и частиц толщиной 15 мкм, алюминирование, хромирование или силицирование соосажденного материала и тепловую обработку в вакууме, причем если тепловую обработку соосажденного материала проводят перед алоюминированием, хромированием или силицированием, то ведут ее при 1000 - 1100oC в течение 1 ч, а если тепловую обработку соосажденного материала проводят после алюминирования, хромирования или силицирования, то ведут ее при температуре около 1100oC в течение приблизительно 1 ч с получением толщины покрывающего материала на подложке менее 75 мкм. 23. Способ по любому из пп.17-22, отличающийся тем, что дополнительно осаждают тепловой барьерный слой в качестве конечного слоя после осаждения. 24. Способ по любому из пп.17-23, отличающийся тем, что подложку выбирают из группы, состоящей из вала газовой турбины, обода, диска, составляющих элементов камеры сгорания, лопасти статора, лопатки рабочего колеса турбины, направляющей лопатки, профиля крыла лопатки газовой турбины, хвостового участка лопатки газовой турбины и наружного обода лопатки газовой турбины.Описание изобретения к патенту
Изобретение относится к обеспечению защитных покрытий, например покрытий, имеющих наплавленный слой, на подложках. Такие покрытия применяют на составляющих элементах, которые подвергаются воздействию высокотемпературных сред, в частности, где особенно вероятными являются коррозия и/или эрозия. Основное, но не обязательно единственное применение таких покрытий состоит в использовании их на составных частях газотурбинных двигателей, в особенности на составляющих элементах, изготовленных из сверхпрочных сплавов, например валах газовой турбины, ободах, дисках, на составляющих элементах камеры сгорания, лопастях статора и лопатках рабочего колеса турбины и на направляющих лопатках. Изобретение также относится к таким деталям, и к оборудованию, и к транспортным средствам или к стационарным установкам, включающим такие детали. В течение долгого времени считали, что составляющие элементы газовых турбин, в особенности их внутренние элементы, находящиеся поблизости от камеры сгорания и расположенные ниже по течению, должны иметь высокую прочность и коррозионную стойкость при высокой температуре. Известно, что для придания таким составляющим достаточного предела прочности при высоких температурах их изготавливают из сверхпрочного материала, имеющего структуру, способную выдерживать нагрузку. Типичными используемыми сверхпрочными сплавами, в зависимости от требований к конкретным использованиям, являются сверхпрочные сплавы на основе Ni, Co и Fe (примерами являются такие сплавы, которые известны под фабричными марками IN100, IN718, IN738, MAR-M002, MAR-M247, CMSX-4, PWA 1480 и PWA 1484). Сверхпрочные сплавы на основе Fe и Co часто представляют собой упрочненные твердые растворы. Сплавы на основе Ni в качестве основной составляющей имеют Ni и часто содержат некоторые количества Cr, Co, Fe, Mo, W или Ta, и часто представляет упрочненный твердый раствор или дисперсионно-твердеющий сплав. Дисперсионно-твердеющие сплавы на основе никеля широко используют для составляющих элементов газовой турбины, и они часто содержат для получения второй фазы, осажденной в ходе соответствующей тепловой обработки Al, Ti или Nb. Примерами дисперсионно-твердеющих сверхпрочных сплавов на основе Ni, используемых для составляющих элементов газовой турбины, являются такие, которые известны под фабричными марками INCO 713, B-1900, IN100, MAR-M200 и MAR-M247. Примерами сверхпрочных сплавов на основе Co являются MAR-M509 и Haynes 188, и примерами сверхпрочных сплавов на основе Fe являются Incoloy 802 и Incoloy 903. Составляющие элементы газовой турбины, изготовленные из сверхпрочных сплавов, иногда подвергаются обработке давлением или отливке и для чрезвычайных рабочих условий могут быть непосредственно отверждены или могут существовать в виде монокристаллической структуры. Так как сам сверхпрочной сплав обычно не способен противостоять агрессивной окислительной атмосфере при обслуживании, на практике принято покрывать составляющие элементы, изготовленные из сверхпрочного сплава, коррозионностойким материалом. Одним из применений на практике является алюминирование сверхпрочного сплава. Его обычно осуществляют с использованием так называемого процесса уплотненного алюминирования или посредством физического осаждения из фазы. Эти процессы включают диффузию Al в сверхпрочный сплав, при этом в случае сверхпрочных сплавов на основе Ni образуются алюминиды, например NiAl. При обслуживании образуется предназначенный для защиты материала поверхностный слой Al2O3, который, вследствие термического расширения и сжатия, имеет склонность к отслаиванию. Его постоянно восстанавливают посредством диффузии Al снаружи, и в конечном счете, когда уже больше не существует Al в количестве, достаточном для замены отслоенного материала на конкретном участке, составляющий элемент, изготовленный из сверхпрочного сплава, будет подвергаться быстрой местной коррозии. Хром и кремний, вместе или поодиночке, и в отдельности или в дополнение к алюминию, могут также диффундировать в сверхпрочный сплав, образуя поверхностный слой, включающий хромиды или силициды. Хотя в дальнейшем будет делаться ссылка, главным образом, на алюминирование, следует понимать, что такую ссылку необходимо интерпретировать как альтернативно относящуюся к хромированию и/или силицированию. Еще одним применением на практике является покрытие сверхпрочного сплава наплавленным слоем, например MCrAlY, MCrAlHf, MCrAlYHf, MCrAlYHfSi и MCrAlTaY, где M является Co, или Ni, или Fe, или их смесью. Добавление Y, Si или Hf помогает предотвратить отслоение Al2O3 от поверхности, и таким образом, увеличивает срок службы составляющего элемента. Эти материалы могут бить нанесены путем плазменного напыления; или путем процесса соосаждения, например такого процесса, который мы описали в нашем патенте GB-B-2167446. Обычно принято покрывать составляющий элемент этими материалами таким образом, чтобы получить слой толщиной от 75 до 200 мкм или более. Процессы покрытия являются дорогостоящими и состовляющие элементы, имеющие толщину покрытия указанного порядка, имеют срок службы, достаточный для оправдания таких затрат. Проблема с покрытиями, имеющими толщину слоя указанного порядка, состоит в том, что в условиях обслуживания, становящихся постепенно все более экстремальными в большинстве современных газовых турбин, подвержены термомеханическому усталостному растрескиванию, и это является крайне нежелательным, в частности, если покрытие наносят на тонкостенный полый составляющий элемент, например лопатку турбины, поскольку растрескивание покрытия может вызвать повреждение лопатки. В патенте США N A-4897315 описано плазменное напыление NiCoCrAlY слоем 25,4 мкм на сверхпрочной сплав на основе Ni в форме монокристалла. После плазменного напыления покрытие подвергали стеклодробеструйной обработке, алюминировали уплотняющей цементационной смесью и, в конечном счете, осуществляли стадии диффузии и осаждения во время тепловой обработки. В описании к патенту указано, что предпочтительным способом нанесения MCrAlY покрытия является плазменное напыление, но в описании есть также общее заключение о том, что MCrAlY может быть нанесен, например, путем плазменного напыления, электронно-лучевой эмиссии, нанесения электролитического покрытия, металлизации напылением или путем нанесения покрытия из пульпы. Тот факт, что нанесенный таким образом слой MCrAlY не очень ровный, очевидно является одной из причин для осуществления в этом способе операции дробеструйной обработки. Хотя в патенте США A-4897315 упоминаются другие способы осаждения MCrAlY, конкретные способы, в результате реализации которых можно получить покрытие, имеющее как превосходную стойкость, так и превосходную ударную вязкость при циклическом изменении температуры, неизвестны. Полагают, что любой известный способ нанесения покрытия или приводит к получению покрытия, которое является слишком пористым, при этом трудно регулировать толщину покрытия, или к получению покрытия, которое имеет тенденцию к растрескиванию при циклическом изменении температуры. В нашем патенте GB-B-2254338 мы представили способ соосаждения CoCrAlY при плотности тока 3 мА/см2и концентрации порошка в ванне 70 г/л в течение 24-х часов, при этом получили покрытие толщиной между 50 и 125
фиг. 1 представляет перспективный вид устройства для нанесения покрытия;
фиг. 2 представляет вид устройства сбоку;
фиг. 3 представляет вид устройства спереди;
фиг. 4 представляет перспективный вид зажимного приспособления, на котором изделия покрывают и подвешивают. Устройство, показанное на чертежах, включает сосуд или контейнер 1, имеющий верхнюю часть 2 в форме параллелепипеда и нисходящую конусную нижнюю часть 3 в форме перевернутой пирамиды, которая является скошенной для того, чтобы одна боковая грань 4 являлась продолжением одной боковой грани 5 верхней части. Сосуд 1 содержит перегородку 6, которая лежит в вертикальной плоскости, параллельной боковым граням 4 и 5 сосуда, и осуществляет контактирование в боковых кромках 7 и 8 со смежной вертикальной и наклонной поверхностями сосуда. Таким образом, перегородка разделяет сосуд на большую рабочую зону 9 и меньшую зону возврата 11. В своей нижней части перегородка 6 заканчивается горизонтальной кромкой 12 выше дна сосуда для получения взаимосвязи 13 между рабочей зоной 9 и зоной возврата 11. В своей верхней части перегородка 6 заканчивается горизонтальной кромкой 14 ниже верхних краев сосуда 1. В нижней части зоны возврата 11 расположено отверстие для впуска воздуха 15, которое присоединено к воздушному насосу (не показан). В рабочей зоне 9 установлено зажимное приспособление 21, на котором закреплены обрабатываемые детали, на которые наносят покрытие, при этом приспособление 21 установлено таким образом, чтобы обрабатываемые детали в сосуде можно было передвигать таким способом, который описан ниже более подробно. Когда устройство используют для нанесения электролитического покрытия, для приложения напряжения к обрабатываемой детали, установленной в зажимном приспособлении 21, относительно анода, который подвешен в рабочей зоне, обеспечены проводники тока. При использовании устройстве для соосаждения покрытия на обрабатываемых деталях обрабатываемые детали устанавливают в зажимном приспособлении 21, которое расположено в сосуде так, как это показано на чертежах. Перед или после расположения зажимного приспособления сосуд заполняют до уровня 17 выше верхней кромки 14 перегородки 6 раствором для нанесения покрытия, содержащего частицы, которые необходимо соосадить. В отверстие для впуска воздуха 15 подают воздух и он поднимается вверх в зону возврата 11, захватывая раствор и частицы. В верхней части зоны возврата воздух выходит, а раствор и частицы перетекают через водослив с широким порогом, образованный верхней кромкой 14 перегородки, и стекает вниз мимо обрабатываемых деталей, расположенных в зажимном приспособлении 21. В нижней части рабочей зоны 9 частицы имеют склонность к осаждению и скольжению вниз по наклонным сторонам сосуда в направлении взаимосвязи 13, где они снова улавливаются в раствор и опять циркулируют. Когда частицы, перемещающиеся вниз в рабочей зоне 9, сталкиваются с обрабатываемой деталью, они имеют склонность к осаждению на обрабатываемой детали, где они начинают внедряться в металл, на который одновременно наносят электролитическое покрытие. Как показано на фиг. 4 и как описано в патенте GB-B-2254338, покрываемые обрабатываемые детали устанавливают в зажимном приспособлении 21, показанном на фиг.4, которое подвешивают в сосуде 1. Зажимное приспособление на фиг. 2 и 3 показано в упрощенном виде, но не включено в фиг.1 по причине ясности. Зажимное приспособление 21 включает деку 22, которая установлена на вершине сосуда 1, надежную опору 23 в направлении одного конца и пару направляющих приспособлений 24 на другом конце. Направляющие приспособления 24 имеют лицевые направляющие, в которых передвигается ползун 25, несущий вертикальную стойку 26, которая проходит вверх через отверстие 27 в деке 22 и сцепляется с шестерней 28, ведомой реверсивным электродвигателем 29. Дека 22 поддерживает второй электродвигатель 31, который приводит в движение вертикальный вал 32, несущий коническую зубчатую шестерню 33, которая входит в зацепление с храповым колесом 34, закрепленным на одном конце шпинделя 35, установленного в опоре 23. Другой конец шпинделя 35 присоединен посредством универсального соединения 36 к одному концу вала 37, другой конец которого передвигается посредством сферического подшипника 38 в ползуне 25. Вал 37 несет множество острых выступов, которые жестко присоединены к нему, на фиг. 4 показан только один острый выступ 39. Выступ 39 проходит в плоскости, содержащей ось вала 37, при этом продольная ось острого выступа составляет с осью вала 37 угол


На деке 22 установлен электронный регулятор двигателя 43, который присоединен линиями 44 и 45 к двигателям 29 и 31. Регулятор 43 предназначен для управления двигателем 31 только в одном направлении, но с остановкой для того, чтобы вал 37 вращался вокруг горизонтальной оси (оси x). Регулятор 43 предназначен для управления двигателем 29 попеременно в противоположных направлениях для того, чтобы вращать возвратно-поступательно ползун 25 и, таким образом, налагать на вращение вокруг оси x колебательное вращение вокруг вращательной оси в универсальном соединении 36 (ось y). Угол




Класс C25D15/02 электролитическим способом в сочетании с электрофорезом
Класс C23C28/00 Способы получения по крайней мере двух совмещенных покрытий либо способами, не предусмотренными в одной из основных групп 2/00