учебный прибор по физике

Классы МПК:G09B23/18 в электричестве или магнетизме 
Автор(ы):
Патентообладатель(и):Военный инженерно-космический университет им.А.Ф.Можайского
Приоритеты:
подача заявки:
1998-04-17
публикация патента:

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме в высших и средних специальных заведениях по курсу физики для изучения и углубления знаний физических законов. Технический результат изобретения заключается в расширении функциональных возможностей. Прибор содержит соленоид, подключенный к генератору гармонического напряжения, подвижный шток с индикаторной катушкой и с указателем, шкалу, неподвижные индикаторные катушки, переключатель и регистратор ЭДС. 7 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7

Формула изобретения

Ученый прибор по физике, содержащий соленоид, подключенный к генератору гармонического напряжения, отличающийся тем, что в него введены шкала, подвижный шток с указателем, регистратор ЭДС, переключатель, подвижная индикаторная катушка, закрепленная на конце штока так, что ее ось совпадает с осью соленоида, и катушка с штоком могут перемещаться внутри соленоида, n - 1 неподвижных индикаторных катушек, которые имеют различный диаметр, охватывают соленоид и установлены на его середине, при этом их оси также совпадают с осью соленоида, первые выводы неподвижных и подвижных индикаторных катушек соединены с первым вводом регистратора ЭДС, второй ввод которого соединен с подвижным контактом переключателя, а вторые выводы подвижной и неподвижных индикаторных катушек соединены с соответствующими неподвижными контактами переключателя.

Описание изобретения к патенту

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме в высших и средних специальных учебных заведениях по курсу физики для изучения и углубления знаний физических законов.

Известно устройство для демонстрации явления электромагнитной индукции (Т. И. Трофимова. Курс физики М.: Высшая школа, 1990. - 473 с, с.193, рис. 179б). В нем концы одной из катушек, вставленных одна в другую, присоединяются к гальванометру, а через другую катушку пропускается ток. Однако это устройство не позволяет продемонстрировать наличие вихревого электрического поля, которое появляется от изменения магнитного поля. В этом устройстве нет возможности измерить амплитуду вихревого электрического поля, ее зависимость от расстояния до оси катушки и от амплитуды переменного магнитного поля.

Известен также прибор для демонстрации электромагнитной индукции (RU патент 2058049, G 09 B 23/18 10.04.96 Бюл. N 10). Этим прибором нельзя продемонстрировать наличие вихревого электрического поля и измерить его величину.

Наиболее близким к предлагаемому является учебный прибор по физике (RU патент N 2018973, 30.03.94 Бюл. N 16). Он содержит соленоид, подключенный к генератору гармонического напряжения. Прибор позволяет демонстрировать переход ферромагнитной жидкости из жидкого в твердое состояние и наоборот. Но в этом приборе нет возможности показать наличие вихревого электрического поля, измерить его амплитуду в зависимости от расстояния до оси соленоида. Нет также возможности показать зависимость амплитуды вихревого электрического поля от амплитуды создающего его магнитного поля. Кроме того, в этом приборе нельзя продемонстрировать характер магнитного поля внутри соленоида.

Цель изобретения - расширение демонстрационных возможностей, а именно демонстрация первого уравнения Максвелла (изменяющееся магнитное поле порождает вокруг себя вихревое переменное электрическое поле), измерить зависимости электрического поля от вызвавшего его магнитного поля, продемонстрировать характер магнитного поля внутри соленоида, а также характер вихревого электрического поля как внутри соленоида, так и вне его.

Эта цель достигается тем, что в известное устройство, содержащее соленоид, подключенный к генератору гармонического напряжения, введены шкала, подвижный шток с указателем, регистратор ЭДС, переключатель на n положений, подвижная индикаторная катушка, установленная на конце штока так, что ее ось совпадает с осью соленоида. Введены также (n - 1) неподвижных индикаторных катушек, которые имеют различный диаметр, охватывают соленоид и установлены на его середине, при этом их оси также совпадают с осью соленоида.

Первые выводы неподвижных и подвижной индикаторных катушек соединены с первым вводом регистратора ЭДС, второй ввод которой соединен с подвижным контактом переключателя, а вторые выводы подвижной и неподвижных индикаторных катушек соединены с соответствующими неподвижными контактами переключателя.

На фиг.1 - фиг.6 представлены рисунки, поясняющие принцип работы предлагаемого учебного приборы по физике. На фиг.7 показан общий вид прибора.

Учебный прибор по физике (фиг.7) содержит: 1 - длинный соленоид; 2 - генератор гармонического напряжения; 3.1 - подвижная индикаторная катушка; 3.2, 3.3, ..., 3.n - неподвижные индикаторные катушки; 4 - регистратор ЭДС; 5- подвижный шток с указателем; 6- шкала; 7 - переключатель; 8.1 - выводы подвижной индикаторной катушки; 8.2, 8.3, ..., 8.n - выводы неподвижных индикаторных катушек.

Максвелл выдвинул гипотезу о связи между переменным электрическим и магнитным полем. Он утверждал, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле. Для установления связи между изменяющимся магнитным полем и вызываемым им электрическим полем рассмотрим электромагнитное поле соленоида. На фиг.1 изображен соленоид, содержащий N витков с радиусом R и длиной l. Так как в данном соленоиде выполняется условие l >> R, то его можно приближенно считать бесконечно длинным. Можно также считать, что магнитное поле бесконечно длинного соленоида сосредоточено целиком внутри него, а полем вне соленоида можно пренебречь. Если к соленоиду приложить гармоническое напряжение, то в цепи будет протекать ток, изменяющийся также по гармоническому закону i = Imcos2учебный прибор по физике, патент № 2133505учебный прибор по физике, патент № 2133505t. Здесь Im - амплитуда тока, учебный прибор по физике, патент № 2133505 - частота гармонических колебаний. По гармоническому закону с частотой учебный прибор по физике, патент № 2133505 будет изменяться также и магнитное поле соленоида.

На фиг.1 изображены линии магнитной индукции (линии вектора учебный прибор по физике, патент № 2133505), расположенные только в плоскости чертежа. На фиг. 1 видно, что во всех точках средней части внутри соленоида векторы магнитной индукции учебный прибор по физике, патент № 2133505 одинаковы как по модулю, так и по направлению. Такое магнитное поле называется однородным. У концов соленоида линии идут реже и искривляются, а значит, поле становится неоднородным, величина его уменьшается.

Магнитная индукция B поля в средней части длинного соленоида изменяется во времени и зависит от мгновенного значения тока i, числа витков N и длины соленоида l

учебный прибор по физике, патент № 2133505

учебный прибор по физике, патент № 2133505 амплитудное значение магнитной индукции, учебный прибор по физике, патент № 2133505o - магнитная постоянная, Im - амплитуда тока, учебный прибор по физике, патент № 2133505 - частота изменения магнитной индукции.

Согласно Максвеллу при изменении магнитного поля учебный прибор по физике, патент № 2133505 как в области, занимаемой им, так и во всем окружающем его пространстве, возникает вихревое электрическое поле учебный прибор по физике, патент № 2133505 силовые линии которого, в отличие от электрического поля, создаваемого зарядом, представляют собой замкнутые кривые. На фиг.2 показано плоское вихревое электрическое поле длинного соленоида. Пунктирные линии изображают электрическое поле в момент, когда магнитное поле (сплошные линии) возрастает.

Если замкнутый круговой проводник L поместить в вихревое электрическое поле учебный прибор по физике, патент № 2133505 как показано на фиг.3, то оно вызывает движение электронов по замкнутым траекториям и приводит к возникновению ЭДС. Сторонними силами являются силы вихревого электрического поля. Циркуляция вектора учебный прибор по физике, патент № 2133505 вихревого электрического поля по замкнутому контуру L равна ЭДС.

учебный прибор по физике, патент № 2133505

Регистратором ЭДС, например вольтметром V с большим входным сопротивлением и хорошо скрученными подводящими проводами, можно измерить ЭДС в замкнутом круговом проводнике L.

Вихревое электрическое поле будет, как и магнитное поле, функцией только времени E(t). Амплитуда этого поля зависит от расстояния r до оси соленоида O (фиг.3). Определим зависимость амплитуды Em напряженности вихревого электрического поля внутри соленоида (r < R) от расстояния r до его оси. Для этого воспользуемся первым уравнением Максвелла:

учебный прибор по физике, патент № 2133505

Преобразуем левую часть выражения (3). Выберем в качестве контура L (фиг. 5) силовую линию вихревого электрического поля внутри соленоида (r < R). На фиг. 5 видно, что напряженность вихревого электрического поля одинакова во всех точках, равноудаленных от оси соленоида O, и направлена по касательной к окружности с центром на оси соленоида. Тогда циркуляция вектора учебный прибор по физике, патент № 2133505 по замкнутому контуру

учебный прибор по физике, патент № 2133505

Внутри соленоида поле однородно и вектор учебный прибор по физике, патент № 2133505 всюду имеет однородное распределение, поэтому правую часть выражения (3) можно также преобразовать следующим образом:

учебный прибор по физике, патент № 2133505

Учитывая, что магнитная индукция внутри длинного соленоида изменяется по гармоническому закону (1), выражение (5) можно записать в другом виде:

учебный прибор по физике, патент № 2133505

Подставим выражение (4) и (6) в выражение (3), получим

E = Bmучебный прибор по физике, патент № 2133505учебный прибор по физике, патент № 2133505rsin2учебный прибор по физике, патент № 2133505учебный прибор по физике, патент № 2133505t = Emsinучебный прибор по физике, патент № 2133505учебный прибор по физике, патент № 2133505t, (7)

учебный прибор по физике, патент № 2133505 - амплитуда вихревого электрического поля.

Учитывая, что Hm= NIm/l есть амплитуда напряженности магнитного поля, получим окончательное выражение, связывающее амплитуду Em вихревого электрического поля с амплитудой Hm, вызвавшего напряженность его магнитного поля

Em = учебный прибор по физике, патент № 2133505oучебный прибор по физике, патент № 2133505учебный прибор по физике, патент № 2133505rHm. (8)

Из выражения (8) видно, что внутри соленоида (r < R) амплитуда Em напряженности электрического поля при постоянной амплитуде Hm и частоте учебный прибор по физике, патент № 2133505 напряженности магнитного поля пропорциональна расстоянию r от оси соленоида (фиг. 6).

Найдем зависимость амплитуды Em напряженности электрического поля вне соленоида от расстояния r до его оси. Выберем точку А (фиг.5) вне соленоида на расстоянии r от его оси (r учебный прибор по физике, патент № 2133505 R). Так как переменное магнитное поле внутри соленоида возбуждает в окружающем пространстве электрическое поле, то в силу симметрии силовые линии вихревого электрического поля представляют собой окружности с центром на оси соленоида O. Проведен такую окружность через выбранную точку А. Циркуляция вектора учебный прибор по физике, патент № 2133505 равна ЭДС учебный прибор по физике, патент № 2133505 и определяется выражением (2). Сопоставляя выражение (2) и (4) можно записать E2учебный прибор по физике, патент № 2133505r = учебный прибор по физике, патент № 2133505. Отсюда напряженность электрического поля в точке А, расположенной вне соленоида на расстоянии r учебный прибор по физике, патент № 2133505 R.

E = учебный прибор по физике, патент № 2133505/2учебный прибор по физике, патент № 2133505r. (9)

Так как электрическое поле изменяется по гармоническому закону (7), то будет меняться по этому же закону и ЭДС учебный прибор по физике, патент № 2133505. Выражение (9) можно записать в другом виде

Em = учебный прибор по физике, патент № 2133505m/2учебный прибор по физике, патент № 2133505r, (10)

где Em - амплитуда электрического поля, учебный прибор по физике, патент № 2133505m - амплитуда ЭДС. Из выражения (10) видно, что амплитуда Em напряженности вихревого электрического поля вне соленоида зависит обратно пропорционально от расстояния r до его оси (фиг. 6).

Если на рассматриваемую силовую линию вихревого электрического поля поместить замкнутый круговой проводник с подключенным вольтметром, как показано на фиг.3, то он покажет амплитуду ЭДС учебный прибор по физике, патент № 2133505m, наведенную в этом проводнике. Соответственно по формуле (10) можно вычислить амплитуду Em напряженности электрического поля вне соленоида на расстоянии r от оси соленоида.

Для удобства измерения ЭДС вместо одного витка берут плоскую катушку, состоящую из учебный прибор по физике, патент № 2133505 витков. Если учесть это, а также, что обычно вольтметр измеряет действующее учебный прибор по физике, патент № 2133505д u значение ЭДС, тогда окончательное выражение для определения амплитуды Em напряженности вихревого поля на расстоянии r учебный прибор по физике, патент № 2133505 R от оси соленоида имеет вид

учебный прибор по физике, патент № 2133505

где учебный прибор по физике, патент № 2133505 коэффициент пропорциональности.

Если поместить катушку с радиусом r1 = r0 вовнутрь соленоида (r1 < R), как показано на фиг.5, то

учебный прибор по физике, патент № 2133505

С другой стороны, амплитуда Em напряженности электрического поля на расстоянии r от оси соленоида

Em = учебный прибор по физике, патент № 2133505oучебный прибор по физике, патент № 2133505учебный прибор по физике, патент № 2133505roHm. (13)

Приравнивая выражения (12) и (13), получим формулу для расчета амплитуды Hm напряженности магнитного поля внутри соленоида по измеренной вольтметром ЭДС

учебный прибор по физике, патент № 2133505

учебный прибор по физике, патент № 2133505 коэффициент пропорциональности.

Рассмотрим работу предлагаемого прибора (фиг.7). К длинному соленоиду 1 приложено переменное напряжение, которое создается генератором гармонического напряжения 2. В соленоиде 1 протекает также гармонический ток, который создает переменное магнитное поле, сосредоточенное в основном внутри соленоида 1. Согласно Максвеллу (первое уравнение Максвелла) переменное магнитное поле порождает как внутри соленоида, так и вне его вихревое переменное электрическое поле. Это поле можно обнаружить и измерить с помощью n индикаторных катушек 3.1, 3.2, 3.3, ..., 3.n и регистратора ЭДС 4. Каждая индикаторная катушка имеет одинаковое число витков учебный прибор по физике, патент № 2133505.

Индикаторные катушки имеют различный радиус r1, r2, ..., rn, что позволяет измерить амплитуду Em вихревого электрического поля соответственно на расстоянии r1, r2, ..., rn от оси соленоида. Регистратор ЭДС 4 измеряют действующее значение ЭДС учебный прибор по физике, патент № 2133505д, а затем по формуле (11) рассчитывается амплитуда Em вихревого электрического поля на расстоянии r1, r2, ..., rn от оси соленоида 1.

Оси всех индикаторных катушек совпадают с осью соленоида 1. Радиус индикаторных катушек 3.1 меньше радиуса R соленоида 1 (r1 < R). Радиусы остальных индикаторных катушек больше радиуса R соленоида 1 и они охватывают соленоид.

Регистратор ЭДС 4 может поочередно подключаться к соответствующей индикаторной катушке 3.1, 3.2, ..., 3.n с помощью переключателя 7 на n положений. Первые выводы 8.1, 8.2, ..., 8.n индикаторных катушек 3.1, 3.2, ..., 3. n соединены с первым вводом регистратора ЭДС 4, а вторые выводы индикаторных катушек соединены с соответствующими неподвижными контактами переключателя 7. Второй ввод регистратора ЭДС 4 соединен с подвижным контактом переключателя 7.

Индикаторная катушка 3.1 делается подвижной, она закрепляется на подвижном штоке с указателем 5. Для определения положения подвижной индикаторной катушки 3.1 предлагаемый прибор снабжен шкалой 6, на которой нанесены деления, соответствующие расстоянию в сантиметрах от начала до конца соленоида 1. Изменяя положения индикаторной катушки 3.1 внутри соленоида, каждый раз измеряем регистратором ЭДС 4 действующее значение учебный прибор по физике, патент № 2133505д, а затем по формуле (14) рассчитываем амплитуду напряженности магнитного поля. В результате делаем вывод, в каких пределах поле однородное, а где оно неоднородное.

Технико-экономическая эффективность предлагаемого учебного прибора по физике заключается в том, что расширяется диапазон учебного прибора, что обеспечивает повышение качества усвоения законов физики студентами.

Предлагаемое устройство позволяет:

- экспериментально проверить однородность магнитного поля внутри длинного соленоида;

- определить зависимость амплитуды Em напряженности вихревого электрического поля соленоида от расстояния до его оси, а также от частоты и амплитуды Hm переменного магнитного поля;

- ознакомиться с методом измерения напряженности переменного электрического поля.

Предлагаемое устройство реализовано на кафедре физики и используется в учебном процессе на лабораторных работах по электромагнетизму.

Класс G09B23/18 в электричестве или магнетизме 

наглядное пособие для демонстрации принципа работы одиночного стержневого молниеотвода -  патент 2522060 (10.07.2014)
установка для исследования пассивных элементов электрических цепей -  патент 2507591 (20.02.2014)
установка для исследования электростатического поля методом моделирования -  патент 2507590 (20.02.2014)
способ определения конфигурации распространения силовых линий электростатических полей в жидких углеводородных средах -  патент 2504843 (20.01.2014)
установка для исследования электростатического поля -  патент 2504017 (10.01.2014)
установка для исследования вихревого электрического поля -  патент 2504016 (10.01.2014)
учебный прибор для изучения законов электромагнитной индукции -  патент 2500038 (27.11.2013)
универсальная учебная модель для изучения электромагнитной индукции -  патент 2499294 (20.11.2013)
устройство комплекта оборудования по курсу физики "электромагнитные явления" -  патент 2499293 (20.11.2013)
стенд для изучения гибридных электронных устройств -  патент 2493609 (20.09.2013)
Наверх