способ деасфальтизации тяжелых углеводородных фракций

Классы МПК:C10G21/00 Очистка углеводородных масел в отсутствие водорода экстракцией селективными растворителями
Автор(ы):
Патентообладатель(и):Яковлев Сергей Павлович
Приоритеты:
подача заявки:
1997-12-23
публикация патента:

Использование: в нефтеперерабатывающей промышленности. Способ заключается в подаче сырья и растворителя в колонный аппарат через инжекторы и отражатели, установленные внутри аппарата, причем входящие в аппарат через инжекторы сырье и растворитель инжектируют потоки из зон, расположенных ниже установки инжекторов, через соединенные с инжекторами коллекторы. Отбор из аппарата растворов асфальта и деасфальтизата осуществляют непрерывно. Способ обеспечивает повышение выхода деасфальтизата при снижении соотношения расхода растворителя и сырья на 16 - 20%, что приводит к соответствующему снижению энергозатрат. 3 ил.
Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

Способ деасфальтизации тяжелых углеводородных фракций путем подачи сырья и растворителя в колонный аппарат, осуществляемой через инжекторы и отражатели, установленные внутри аппарата, и непрерывного отбора из аппарата растворов асфальта и деасфальтизата, отличающийся тем, что входящие в аппарат через инжекторы сырье и растворитель инжектируют потоки из зон, расположенных ниже установки инжекторов, через соединенные с инжекторами коллекторы.

Описание изобретения к патенту

Изобретение относится к способам деасфальтизации тяжелых углеводородных фракций сжиженными низкомолекулярными алканами, алифатическими спиртами или бензиновыми фракциями и может быть использовано в нефтеперерабатывающей промышленности.

Известен способ деасфальтизации тяжелых углеводородных фракций, в соответствии с которым предварительно смешанное с растворителем сырье подвергают одновременно акустическому и гидродинамическому воздействию /SU 1474169/, причем гидродинамическое воздействие создают перемешиванием высокоскоростной турбинной мешалкой.

Недостатком данного метода является низкая эффективность массообмена при указанных видах воздействия, приводящая к уменьшению выхода деасфальтизата. Кроме этого, необходимость установки ультразвукового излучателя и высокоскоростной турбинной мешалки связана с увеличением энергозатрат на осуществление процесса. Наличие уплотнений вала мешалки снижает надежность и безопасность процесса. Механическое перемещение и ультразвуковое воздействие приводит к усложнению аппаратурного оформления.

За прототип изобретения принят способ деасфальтизации тяжелых углеводородных фракций /RU 2064961/, в котором исходное сырье и растворитель, в качестве которого используют предельные парафиновые углеводороды C3-C7, бензиновые фракции или алифатические спирты C3-C5, подают в колонный аппарат таким образом, что сырье и растворитель образуют встречные потоки, противоточное движение которых обусловлено разностью их плотностей. Непрерывно отбирают из аппарата растворы асфальта и деасфальтизата, при этом сырье и растворитель подают в аппарат через инжекторы, интенсифицируя процесс смешения за счет использования энергии струи подаваемого сырья и растворителя.

Цель изобретения - увеличение выхода деасфальтизата в процессе деасфальтизации. Поставленная цель достигается тем, что подачу сырья и растворителя в колонный аппарат осуществляют через инжекторы и отражатели, установленные внутри аппарата, при этом входящие в аппарат через инжекторы сырье и растворитель инжектируют потоки из зон, расположенных ниже установки инжекторов, через соединенные с инжекторами коллекторы. Отбор из аппарата растворов асфальта и деасфальтизата осуществляют непрерывно.

Сущность способа поясняется схемами, приведенными на фиг. 1, 2, 3.

Сырье 1 и растворитель 2 подают в верхнюю и нижнюю части колонного аппарата 3, оснащенного контактными устройствами 4. Поступая по трубопроводам 5, 6, заканчивающимися соплами 7, 8, в инжекторы 9, 10, входящий сырьевой поток и растворитель инжектируют через коллекторы 21, 22 сырьевую смесь из нижележащих зон аппарата в зону подачи сырья и растворителя, соответственно.

Процесс, происходящий при вводе сырья в аппарат, представляется следующим образом (см. фиг. 2). Сырье 1, выходящее из сопла 7 с высокой скоростью, попадает в сужающуюся часть инжектора 9. При этом в полости 20 коллектора 21 создается разрежение, приводящее к движению смеси, находящейся в нижележащем сечении аппарата в эту полость. Т.е. поток сырья увлекает за собой эту смесь 17 и нагнетает (инжектирует) ее через инжектор 9, образуя высокоскоростной поток 18, который дробится на отражателях (наборе полых усеченных конусов или дисков с отверстиями) 11. Образовавшиеся потоки 19 равномерно распределяются по сечению аппарата, контактируя с нисходящим потоком раствора рефлюкса, поступающего из вышележащей зоны аппарата. Количество инжектируемой смеси 17 в 2-3 раза превосходит количество сырья 1, поступающего в аппарат через сопло инжектора.

При подаче растворителя (фиг. 3) через соответствующий инжектор, инжектирование смеси из нижележащей зоны аппарата, смешение потоков и распределение смеси по сечению аналогичным описанным выше процессам, сопровождающим подачу сырья.

Таким образом, предлагаемый способ подачи сырья и растворителя обеспечивает не только интенсивное перемешивание с неравновесными потоками в соответствующих зонах аппарата, распределение образующихся смесей по его сечению, но и создание контуров циркуляции потоков между зонами с разной температурой и концентрацией компонентов сырья и используемого растворителя. Дальнейшее движение потоков обусловлено разностью их плотностей.

Развитие поверхности контакта фаз и интенсификация массообмена между ними позволяет приблизить сырье и растворитель, поступающие в аппарат к состоянию равновесия с потоками, движущимися в соответствующих зонах колоны. При этом происходит более полное извлечение целевых компонентов из сырья уже на стадии его подачи в аппарат и дополнительное извлечение этих компонентов из потока, контактирующего с растворителем в нижней части аппарата - снижение потерь деасфальтизата с асфальтовым раствором. Кроме этого, предлагаемое использование энергии вводимых потоков сырья и растворителя позволяет перераспределять (за счет инжектирования) потоки сырьевой смеси между зонами аппарата, создавая оптимальные концентрации компонентов сырья и растворителя в соответствующих зонах. Это обеспечивает возможность повысить селективность процесса, увеличить выход целевых компонентов (повысить выход деасфальтизата при заданном его качестве) наряду со снижением кратности растворителя к сырью - уменьшением энергозатрат на проведение процесса.

Раствор извлеченного из сырья деасфальтизата 13 отбирают из верхней части колонны, смесь не извлеченных компонентов, асфальта и части растворителя 14 отбирают с низа аппарата.

Создание заданного температурного профиля в аппарате обеспечивается теплообменником 15 (установлен в верхней отстойной зоне), подогревающим раствор деасфальтизата теплоносителем 16.

Предлагаемый способ был проверен в промышленных условиях.

В качестве сырья процесса деасфальтизации использовали гудрон смеси западносибирских нефтей плотностью 986 кг/м3, вязкостью ВУ при 80oC - 120, коксуемостью 16 - 17%.

Пример 1. Деасфальтизацию сырья осуществляли в соответствии со способом, взятым за прототип.

В колонный аппарат, оснащенный инжекторами и отражателями, подавали сырье и растворитель (сжиженный пропан) соответственно в верх и низ колонны. Соотношение массовых расходов сырья и растворителя - 1 : 2,5. Температура в зоне смешения 60oC, в месте установки подогревателя в - верхней отстойной зоне - 75oC.

Достигаемый выход деасфальтизата составил 26,5%.

Пример 2. Деасфальтизацию сырья осуществляли в соответствии с предлагаемым способом. Отношение массовых расходов сырья и растворителя, температуры в зоне смешения и верхней отстойной зоне те же, что и в примере 1.

Сырье и растворитель подавали в аппарат через инжекторы, оснащенные коллекторами для инжектирования потоков из нижележащих зон. Выходящий из инжекторов поток диспергировался на отражателях. Расход инжектируемой сырьевой смеси в 2,5 раза выше расходов сырья и растворителя, поступающих в инжекторы.

Выход деасфальтизата в этом случае составил 28,7%.

Качество целевого продукта в обоих опытах получали одинаковым - коксуемость деасфальтизата находилась в пределах 1,1 - 1,2%.

Как видно из примеров, предлагаемый способ деасфальтизации обеспечивает повышение выхода деасфальтизата на 2,2%.

Его осуществление не связано с существенным усложнением аппаратурного оформления.

В предлагаемом способе получение выхода деасфальтизата, равного выходу в способе, взятом за прототип, осуществляется при снижении соотношения расхода растворителя и сырья на 16 - 20%, что приводит к соответствующему снижению энергозатрат.

Источники информации

1. Авторское свидетельство СССР N 1474169, C 10 G 21/00, 1989.

2. Патент РФ N 2064961, кл. 6 C 10 G 21/14, 1996.

Класс C10G21/00 Очистка углеводородных масел в отсутствие водорода экстракцией селективными растворителями

способ очистки широкой фракции легких углеводородов от меркаптановых соединений и абсорбент для его осуществления -  патент 2529203 (27.09.2014)
способ очистки моторного масла от продуктов старения и загрязнений -  патент 2528421 (20.09.2014)
способ извлечения металлов из потока, обогащенного углеводородами и углеродистыми остатками -  патент 2528290 (10.09.2014)
способ деасфальтизации нефтяных остатков -  патент 2526626 (27.08.2014)
способ деасфальтизации нефтяных остатков -  патент 2525983 (20.08.2014)
способ очистки и обезвоживания кислого гудрона и установка для его осуществления -  патент 2525469 (20.08.2014)
сверхкритический сепаратор -  патент 2522155 (10.07.2014)
способ получения неканцерогенного ароматического технологического масла -  патент 2520096 (20.06.2014)
способ и устройство для получения углеводородного топлива и композиции -  патент 2517186 (27.05.2014)
способ получения нефтяного пластификатора -  патент 2513099 (20.04.2014)
Наверх