способ эндоскопической флюоресцентной диагностики злокачественных опухолей полых органов

Классы МПК:G01N33/48 биологических материалов, например крови, мочи; приборы для подсчета и измерения клеток крови (гемоцитометры)
G01N33/52 использование соединений или составов для колориметрического, спектрофотометрического или флуорометрического анализа, например реактивной бумаги
Автор(ы):, ,
Патентообладатель(и):Московский научно-исследовательский онкологический институт им.П.А.Герцена
Приоритеты:
подача заявки:
1997-11-26
публикация патента:

Способ может быть использован в медицине, а именно в онкологии. Определяют соотношения между интегральной интенсивностью флюоресценции тканей в спектральном диапазоне 625-645 нм (cуперпозиция спектров собственной (эндогенной) флюоресценции и экзогенной флюоресценции фотосенсибилизатора) и интегральной интенсивностью флюоресценции в спектральном диапазоне 550-570 нм (собственная флюоресценция тканей). Способ позволяет повысить достоверность диагностики и снизить число ложноположительных сигналов.

Формула изобретения

Способ эндоскопической флюоресцентной диагностики злокачественных опухолей полых органов с использованием экзогенной флюоресценции фотосенсибилизатора фотогема и эндогенной флюоресценции биотканей, отличающийся тем, что в процессе флюоресцентно-диагностического обследования определяют спектральный параметр, являющийся отношением интегральной интенсивности флюоресценции в красном диапазоне спектра (суперпозиции эндогенной и экзогенной флюоресценции биоткани) и интегральной интенсивности эндогенной флюоресценции в желто-зеленой области спектра, и при его значении 3 отн.ед. и выше диагностируют злокачественную опухоль.

Описание изобретения к патенту

Изобретение относится к области медицины, а именно к онкологии, и может быть использовано при уточняющей диагностике, поиске новых очагов и определении границ опухолевых поражений полых органов.

Флюоресцентная диагностика рака основана на возможности распознавания злокачественных тканей по индуцированной световым излучением характерной флюоресценции экзогенных или эндогенных флюорохромов.

Избирательность накопления фотосенсибилизатора в злокачественных тканях и возможность его обнаружения по спектрам экзогенной флюоресценции из освещаемой лазерным излучением области составляют основу фотодинамической или флюоресцентной диагностики опухолей.

Существуют работы по флюоресцентной диагностике рака с фотосенсибилизаторами порфиринового ряда Фотофрин (1, 2), Фотогем, где показана принципиальная возможность диагностики рака по экзогенной флюоресценции фотосенсибилизатора, предварительно введенного в организм пациента и обладающего способностью к повышенному удержанию в тканях злокачественных новообразований (опухолетропностью).

Для разделения спектров используется специально разработанная программа вычитания усредненного спектра фоновой флюоресценции и выделения экзогенного вклада флюоресценции Фотогема в регистрируемый спектр. Величина отношения интегральных интенсивностей экзогенной флюоресценции в опухоли и в нормальной ткани является критерием оптической селективности накопления препарата - флюоресцентной контрастностью опухолевой ткани на фоне окружающей нормальной.

Однако анализ результатов по флюоресцентной диагностике рака с данными фотосенсибилизаторами показывает, что возможности флюоресцентного обнаружения опухолей существенно ограничены низким квантовым выходом флюоресценции и существенными потерями возбуждающего излучения за счет его поглощения гемоглобином и другими тканевыми молекулами (меланин, флавины, порфирины и т.д. ). Кроме того, накопление фотосенсибилизаторов и, как следствие, повышение уровня флюоресценции имеет место в очагах воспаления ткани, т.е. при флюоресцентной диагностике с экзогенными флюорохромами имеют место ложноположительные сигналы (артефакты).

Существуют работы, где показана возможность диагностики злокачественных опухолей по собственной (ауто) флюоресценции биотканей в диапазоне 450-700 нм. При этом обнаружено, что при возбуждении флюоресценции от 360 до 510 нм интенсивность эндогенной флюоресценции в опухолях in vivo ниже, чем в окружающих нормальных тканях.

Так, в работе показано, что интегральная интенсивность флюоресценции индуцированных опухолей мочевого пузыря и почек у грызунов в красной части спектра ниже, чем в окружающей непораженной ткани. В работе было показано, что интенсивность собственной флюоресценции в очагах патологии (тяжелая дисплазия, рак) бронхов in vivo значительно меньше, чем интенсивность флюоресценции в неизмененной слизистой оболочке, при этом различия в форме спектров выражены слабо.

В качестве прототипа использовалась работа, где изучались экзогенная флюоресценция фотосенсибилизатора Фотогем и эндогенная (собственная) флюоресценция биотканей в диапазоне 550-750 нм при возбуждении излучением лазера на парах меди с длиной волны 510 нм.

Сравнительный анализ спектров эндогенной флюоресценции нормальной кожи, слизистой оболочки полости рта, желудка и пищевода, а также злокачественных опухолей кожи, легкого, пищевода и желудка показывает, что при возбуждении лазером с длиной волны 510 нм спектры флюоресценции указанных тканей можно считать идентичными по форме. Однако интенсивность эндогенной флюоресценции в участках патологии была в 2 - 5 раз ниже, чем в окружающей неизмененной ткани.

К недостаткам прототипа следует отнести то, что, во-первых, при эндоскопическом исследовании оценка интегральной интенсивности флюоресценции может быть искажена за счет неадекватных условий возбуждения флюоресценции биотканей в той или иной точке вследствие дыхательной подвижности, различной геометрии расположения конца волоконно-оптического катетера и поверхности ткани, а также мощности возбуждающего лазерного излучения. Во-вторых, вычитание экзогенного вклада флюоресценции опухолетропного фотосенсибилизатора Фотогем требует проведения дополнительного эндоскопического обследования с целью регистрации эндогенной флюоресценции биотканей до введения фотосенсибилизатора.

Целью предлагаемого способа является повышение точности флюоресцентной диагностики злокачественных опухолей полых органов за счет оптимизации выбора диагностически значимых спектральных параметров и уменьшения возможных ложноположительных сигналов.

Методика проведения эндоскопической флюоресцентной диагностики включает внутривенное введение препарата Фотогем в дозе 1,5-3 мг/кг в.т. Через 24 - 72 часов осуществляется сеанс флюоресцентной диагностики с использованием стандартного эндоскопа и волоконно-оптического катетера. При этом последний вводится в биопсийный канал эндоскопа и устанавливается в просвет органа в контакте с тканью. Для возбуждения флюоресценции биотканей используется излучение лазера на парах меди с длиной волны 510 нм либо аргонового лазера с длиной волны 512 нм. Чтобы не вызывать необратимых фотодинамических повреждений слизистой оболочки при диагностических обследованиях, плотность энергии локального лазерного облучения на поверхности ткани в процессе одного обследования должна быть не более 1 Дж/см2, а средняя мощность лазерного излучения на выходе волоконно-оптического катетера не должна превышать 4 мВт. Следует также учитывать, что при более высоких плотностях мощности лазерного излучения возникает обесцвечивание красителя, что может приводить к ошибкам флюоресцентной диагностики.

После введения фотосенсибилизатора (через 48-72 часа) перед сеансом ФДТ с помощью спектрально-флюоресцентной системы "Спектр" для локальной спектрофлюориметрии биотканей в диапазоне 550-700 нм регистрируется флюоресценция опухоли, подозрительных на опухоль участков и окружающей неизмененной слизистой оболочки.

Поставленная диагностическая цель достигается не разделением вкладов экзогенной флюоресценции из суммарного спектра ткани, а определением соотношения между интегральной интенсивностью флюоресценции тканей (1) в спектральном диапазоне 625-645 нм (суперпозиция спектров собственной (эндогенной) флюоресценции и экзогенной флюоресценции фотосенсибилизатора) и интегральной интенсивностью флюоресценции тканей (1) в спектральном диапазоне 550-570 нм (собственная флюоресценция тканей). Данное соотношение - спектральный, диагностически эффективный параметр Ф, равный

Ф = 1(625-645 нм)/1(550-570 нм),

учитывает оба наблюдаемых ранее эффекта: падение интенсивности эндогенной флюоресценции на поверхности злокачественных новообразований и повышение в них же уровня экзогенной флюоресценции за счет избирательного накопления фотосенсибилизатора и не зависит от условий возбуждения флюоресценции ткани.

Пример 1. Пациент К. , 78 лет, диагноз: рак мочевого пузыря 1 ст., T1NxMo, продолженный рост остаточной опухоли после трансуретральной электрорезекции.

Флюоресцентное обследование было проведено через 48 часов после внутривенного введения фотосенсибилизатора Фотогем из расчета 2 мг/кг веса тела. Были измерены спектры флюоресценции нормальной слизистой оболочки мочевого пузыря (3 точки) и в зоне опухолевого поражения (4 точки). Получены следующие результаты:

Ф (нормальная слизистая оболочка мочевого пузыря) - 0.8

Ф (переходноклеточный рак мочевого пузыря) - 5.6

Таким образом, в зоне опухолевого поражения относительный спектральный параметр Ф в 7 раз выше, чем в нормальной слизистой оболочке мочевого пузыря.

Пример 2. Пациент В., 71 г., диагноз: рак пищевода 1 ст., T1NxMo, остаточная опухоль после сочетанной лучевой терапии.

Флюоресцентное обследование было проведено через 48 часов после внутривенного введения фотосенсибилизатора Фотогем из расчета 2.5 мг/кг веса тела. Были измерены спектры флюоресценции нормальной слизистой оболочки пищевода (в 3-х точках) и в зоне опухолевого поражения (7 точек). Получены следующие результаты:

Ф (нормальная слизистая оболочка пищевода) - 0.9

Ф (плоскоклеточный рак пищевода) - 5.5

Таким образом, в зоне опухолевого поражения относительный спектральный параметр Ф в 6 раз выше, чем в нормальной слизистой оболочке пищевода.

Пример 3. Пациент Ш., 66 лет, диагноз: рак гортани 1 ст., второй рецидив после дистанционной лучевой терапии и фронтолатеральной резекции гортани.

Флюоресцентное обследование было проведено через 72 часа после внутривенного введения фотосенсибилизатора Фотогем из расчета 3 мг/кг веса тела. Были измерены спектры флюоресценции нормальной слизистой оболочки в зоне левой вестибулярной складки (в 4-х точках) и в зоне опухолевого поражения в правой половине гортани (5 точек). Получены следующие результаты:

Ф (нормальная слизистая оболочка гортани) - 1.1

Ф (рецидив плоскоклеточного рака гортани) - 5.7

Таким образом, в зоне опухолевого поражения относительный спектральный параметр Ф в 5.2 раза выше, чем в нормальной слизистой оболочке гортани.

Пример 4. Пациент А., 86 лет, диагноз: рак желудка 1 ст., T1NxMo, мультиентрической формы роста, рецидив после субтотальной резекции желудка.

Флюоресцентное обследование было проведено через 72 часа после внутривенного введения фотосенсибилизатора Фотогем из расчета 2 мг/кг веса тела. Были измерены спектры флюоресценции нормальной слизистой оболочки задней стенки (в 3-х точках), большой кривизны (в 3-х точках) тела желудка и в зоне опухолевого поражения (5 точек). Получены следующие результаты:

Ф (нормальная слизистая оболочка средней трети желудка, задняя стенка) - 0.7

Ф (нормальная слизистая оболочка средней трети желудка, большая крив.) - 0.9

Ф (рецидив высокодифференцированной аденокарциномы желудка) - 4.2

Таким образом, в зоне опухолевого поражения относительный спектральный параметр Ф был в 5.3 раза выше, чем в нормальной слизистой оболочке желудка.

Пример 5. Пациент Ф., 71 г., диагноз: центральный рак нижней доли правого легкого 3 ст., остаточная опухоль после лучевой терапии.

Флюоресцентное обследование было проведено через 48 часов после внутривенного введения фотосенсибилизатора Фотогем из расчета 2 мг/кг веса тела. Были измерены спектры флюоресценции нормальной слизистой оболочки правого главного бронха (в 6-х точках) и в зоне опухолевого поражения правого нижнего долевого бронха (в 5-ти точках). Получены следующие результаты:

Ф (нормальная слизистая оболочка бронха) - 0.9

Ф (плоскоклеточный рак прав. нижнедолевого бронха) - 3.0

Таким образом, в зоне опухолевого поражения относительный спектральный параметр Ф был в 3,3 раза выше чем в нормальной слизистой легкого.

Показания к эндоскопической флюоресцентной диагностике злокачественных опухолей по способу:

1/ уточнение границ поражения при местно-распространенном раке органов дыхания, желудочно-кишечного тракта и мочеполовой системы;

2/ выявление скрытых синхронных очагов рака полых органов как проявления первично множественного опухолевого поражения;

3/ выявление скрытых очагов метахронного рака полых органов у больных 3-й клинической группы, перенесших радикальное хирургическое лечение.

Преимущества предлагаемого способа

Использование предложенной методики позволяет:

1/ не проводить предварительного эндоскопического исследования (до введения фотосенсибилизатора) для оценки фоновой (эндогенной) флюоресценции;

2/ не проводить многофакторного наукоемкого и сложного для клиницистов-практиков спектрально-флюоресцентного анализа с целью разделения вкладов эндогенной и экзогенной флюоресценции;

3/ используя эффективный диагностический параметр, повысить достоверность уточняющей флюоресцентной диагностики и вести поиск новых опухолевых очагов;

4/ снизить число ложноположительных сигналов.

Литература

1. Profio A. E. Review of fluorescence diagnosis using porphyrins. - Proc. SPIE, 1988, v.907, p. 150-156.

2. Monnier Ph. , Savary M., Fontolliet C.H. et.al. Photodetection and photodynamic therapy of "early" squamous cell carcinomas of the pharynx, oesophagus and tracheo-bronchial tree. - Lasers in Med.Science, 1990, v.5, No.2, p. 149-171.

Класс G01N33/48 биологических материалов, например крови, мочи; приборы для подсчета и измерения клеток крови (гемоцитометры)

технология определения анеуплоидии методом секвенирования -  патент 2529784 (27.09.2014)
способ оценки эффекта электромагнитных волн миллиметрового диапазона (квч) в эксперименте -  патент 2529694 (27.09.2014)
способ прогнозирования ухудшения клинического течения идиопатической саркомы капоши, перехода хронической формы в подострую, затем в острую форму заболевания -  патент 2529628 (27.09.2014)
способ идентификации нанодисперсных частиц диоксида кремния в цельной крови -  патент 2528902 (20.09.2014)
способ диагностики метаболического синдрома у детей -  патент 2527847 (10.09.2014)
способ диагностики мембранотоксичности -  патент 2527698 (10.09.2014)
cпособ индуцированных повреждений днк в индивидуальных неделимых ядросодержащих клетках -  патент 2527345 (27.08.2014)
способ прогнозирования развития лимфогенных метастазов при плоскоклеточных карциномах головы и шеи после проведения комбинированного лечения -  патент 2527338 (27.08.2014)
способ выявления свиней, инфицированных возбудителем actinobacillus pleuropneumoniae -  патент 2526829 (27.08.2014)
способ прогнозирования развития пороговой стадии ретинопатии недоношенных у детей без офтальмологических признаков заболевания -  патент 2526827 (27.08.2014)

Класс G01N33/52 использование соединений или составов для колориметрического, спектрофотометрического или флуорометрического анализа, например реактивной бумаги

способ диагностики тромбоэмболии легочных артерий -  патент 2527346 (27.08.2014)
способ оценки токсической опасности антихолинэстеразных соединений -  патент 2526817 (27.08.2014)
способ спекрофотометрического определения ионов металлов -  патент 2526176 (20.08.2014)
способ прогнозирования эффективности лечения больных раком легкого -  патент 2526120 (20.08.2014)
способ комплексной оценки содержания продуктов окислительной модификации белков в тканях и биологических жидкостях -  патент 2524667 (27.07.2014)
способ прогнозирования наступления беременности -  патент 2524650 (27.07.2014)
способ определения маркера развития ревматоидного артрита на основе выявления укорочения относительной длины теломер на отдельных хромосомах в т-лимфоцитах периферической крови -  патент 2522961 (20.07.2014)
способ раннего выявления дисметаболической нефропатии у детей 3-7 лет нефелометрическим методом -  патент 2521366 (27.06.2014)
способ прогнозирования развития кардиопатии и энцефалопатии в неонатальном периоде у новорожденных от женщин с фетоплацентарной недостаточностью -  патент 2521287 (27.06.2014)
способ интраоперационной диагностики рака щитовидной железы -  патент 2521239 (27.06.2014)
Наверх