способ получения водорастворимых карбонильных комплексов короткоживущих технеция (1) и рения (1)

Классы МПК:C01G1/04 карбонилы 
C01G47/00 Соединения рения
C01G57/00 Соединения металлов, не указанных в предыдущих группах этого подкласса
A61K51/00 Препараты, содержащие радиоактивные вещества, для использования в терапии или для исследований на живом организме
Автор(ы):, , ,
Патентообладатель(и):Научно-производственное объединение "Радиевый институт им.В.Г.Хлопина"
Приоритеты:
подача заявки:
1997-07-02
публикация патента:

Изобретение предназначено для использования в радиохимической технологии производства фармацевтических препаратов. Результат изобретения - создание простого способа получения карбонильных комплексов короткоживущих технеция (I) и рения (I). Карбонильные комплексы короткоживущих технеция (I) и рения (I) общей формулы

[Me (CO)3 (H2O)3]+,

где Me = 99mTc или 186Re получают в одну стадию. Пертехнетат или перренат калия обрабатывают карбонилирующим агентом в присутствии галогенводородной кислоты при температуре 200-220oC и давлении 100-160 атм в течение 1-1,5 ч. 1 з.п. ф-лы.

Формула изобретения

1. Способ получения водорастворимых карбонильных комплексов короткоживущих технеция (I) или рения (I) общей формулы

[Me(CO)3(H2O)3]+,

где Me = 99mTc или 186Re, заключающийся в том, что соответствующие пертехнетат или перренат калия обрабатывают карбонилирующим агентом в присутствии галогенводородной кислоты при повышенных температуре и давлении.

2. Способ по п.1, заключающийся в том, что процесс карбонилирования осуществляют при температуре 200 - 220oC и давлении 100 - 160 атм в течение 1 - 1,5 ч.

Описание изобретения к патенту

Заявляемое изобретение относится к области радиохимической технологии и связано с разработкой фармацевтических препаратов на основе радиоактивных изотопов для медицинских целей. По сравнению с долгоживущими изотопами в медицинской диагностике предпочтительным является использование изотопов радиоактивных элементов с малыми периодами полураспада [период полураспада для 99mTc и 186Re составляет 6 и 90 ч, соответственно], что обеспечивает более низкую радиационную нагрузку на внутренние органы и решает вопрос вывода радиоактивных веществ из организма (т.к. через 10 периодов полураспада содержание изотопа будет меньше чем 0.1% от первоначального). При этом раствор должен быть водным и не содержать посторонних лигандов в опасных концентрациях [см. например: Technetium and Rhenium in Chemisstry and Nuclear Medicine, Nicolini, M., Bandoli, G., and Mazzi, U., Eds., Padova, pp. 253-583, 1995].

Известен способ получения водорастворимых карбонильных комплексов технеция-99 и стабильного рения [Me(CO)3(H2O)3]+ [Alberto, R., Schibli, R., et al., Technetium and Rhenium in Chemistry and Nuclear Medicine, Nicolini, M., Bandoli, G. , and Mazzi, U., Eds., Padova, pp. 7-16, 1995]. В этом случае предварительно полученные соли [Net4]2]Me(CO)3Cl3], где Me = Tc или Re, растворяются в воде и образуют хлоридный аква-комплекс [Me(CO)3(H2O)2]Cl. Этот способ можно рассматривать как аналог.

К недостаткам данного способа следует в первую очередь отнести сложность процедуры синтеза исходных солей, длительность которой составляет не менее 48 ч. Следует особо отметить, что в аналоге используется именно долгоживущий изотоп технеция и стабильный рений, в то время как для целей медицинской диагностики необходимо получение водорастворимых карбонильных комплексов короткоживущих изотопов этих карбонильных комплексов короткоживущих изотопов этих элементов. Поэтому длительность синтеза исходных реагентов имеет существенное значение в случае короткоживущих изотопов всего технеция 99m (T1/2 = 6 ч). При использовании методики получения требуемых соединений, принятой в случае аналога, активность и, соответственно, выход водорастворимых карбонильных форма целевого препарата по окончании синтеза уменьшится примерно в 250 раз, что делает этот метод практически непригодным для целей медицинской диагностики.

Задача изобретения заключается в разработке способа получения водорастворимых карбонильных комплексов короткоживущих 99mTc и 186Re общей формулы [Me(CO)3(H2O)3]+ биомедицинского назначения.

Поставленная задача решается путем использования в качестве исходных реагентов для получения водорастворимых карбонильных комплексов короткоживущих 99mTc и 186Re соответствующих пертехнетата и перрената калия, галогенводородной кислоты и карбонилирующего агента (CO). Реакционную смесь помещают в автоклав и нагревают в течение 1-1.5 ч при температуре 200-220oC и давлении 100-160 атм. Синтез протекает в одну стадию (см. примеры). Для заявляемого способа условия карбонилирования, приведенные выше, являются оптимальными, и уход за пределы оптимального режима снижает выход целевого продукта. Полученный в результате синтеза прозрачный раствор карбонильных комплексов короткоживущих 99mTc и 186Re общей формулы [Me(CO)3(H2O)3]+, после добавления при необходимости буферного раствора и/или лиганда в соответствии с медицинскими требованиями, может быть использован для медико-биологических исследований.

Таким образом использование предложенного способа позволяет сократить время синтеза и обеспечить увеличение выхода водорастворимых карбонильных комплексов короткоживущих 99mTc и 186Re.

Примеры осуществления способа:

Пример 1. Раствор K99mTcO4 (0.46 ГБк) помещают в реакционный стакан из стекла "Пирекс" и добавляют соляную кислоту (0.001-0.1 М). Реакционную смесь помещают в автоклав, нагревают до 200oC при давлении карбонилирующего агента (CO) 100 атм в течение 0.5 ч. После охлаждения раствор анализировался методами тонкослойной хроматографии в сочетании с способ получения водорастворимых карбонильных комплексов   короткоживущих технеция (1) и рения (1), патент № 2125017(способ получения водорастворимых карбонильных комплексов   короткоживущих технеция (1) и рения (1), патент № 2125017)- радиометрией. Общая длительность процесса до выделения целевого раствора 3 ч. Выход [Tc(CO)3(H2O)3]Cl составляет 50%.

Пример 2. Синтез по методике, описанной в примере 1. Раствор K99mTcO4 (0.22 ГБк) с соляной кислотой (0.001-0.1 М) нагревают при 200oC в течение 1 ч при давлении карбонилирующего агента 100 атм. Длительность процесса до выделения целевого раствора 45 ч. Выход [Tc(CO)3(H2O)3]Cl составляет 80%.

Пример 3. Синтез ведут по методике, описанной в примере 1. Раствор K99mTcO4 (0.43 ГБк) с соляной кислотой (0.001-0.1 М) нагревают при 230oC в течение 1.5 ч при давлении карбонилирующего агента 152 атм. Длительность процесса до выделения целевого раствора 5 ч. Выход [Tc(CO)3(H2O)3]Cl составляет 45%.

Пример 4. Синтез ведут по методике, описанной в примере 1. Раствор K99mTcO4 (0.36 ГБк) с соляной кислотой (0.001-0.1 М) нагревают при 200oC в течение 1 ч при давлении карбонилирующего агента 136 атм. Длительность процесса до выделения целевого раствора 4 ч. Выход [Tc(CO)3(H2O)3]Cl составляет 95%.

Пример 5. Синтез ведут по методике, описанной в примере 1. Раствор K99mTcO4 (0.41 ГБк) с соляной кислотой (0.001-0.1 М) нагревают при 210oC в течение 1 ч при давлении карбонилирующего агента 120 атм. Длительность процесса до выделения целевого раствора 4 ч. Выход [Tc(CO)3(H2O)3]Cl составляет 95%.

Пример 6. Раствор K186ReO4 (0.18 ГБк) помещают в реакционный стакана из стекла "Пирекс" и добавляют соляную кислоту (0.001-0.1 М). Реакционную смесь помещают в автоклав, нагревают до 190oC при давлении карбонилирующего агента 110 атм в течение 0.5 ч. Общая длительность процесса до выделения целевого раствора 3 ч. Выход [Re(CO)3(H2O)3]Cl составляет 45%.

Пример 7. Синтез ведут по методике описанной в примере 6. Раствор K186ReO4 (0.13 ГБк) с соляной кислотой (0.001-0.1 М) нагревают при 200oC в течение 1 ч при давлении карбонилирующего агента 120 атм. Длительность процесса до выделения целевого раствора 4 ч. Выход [Re(CO)3(H2O)3]Cl составляет 90%.

Пример 8. Синтез ведут по методике описанной в примере 6. Раствор K186ReO4 (0.15 ГБк) с соляной кислотой (0.001-0.1 М) нагревают при 210oC в течение 1 ч при давлении карбонилирующего агента 135 атм. Длительность процесса до выделения целевого раствора 4 ч. Выход [Re(CO)3(H2O)3]Cl составляет 90%.

Как видно из примеров приведенных выше, выход рабочих параметров процесса за пределы оптимальных для заявляемого способа (а именно 220oC и 100-160 атм при длительности карбонилирования 1-1.5 ч) приводит к резкому уменьшению выхода целевых водорастворимых карбонильных комплексов короткоживущих технеция (I) и рения (I) общей формулы [Me(CO)3(H2O)3]-, где Me = 99mTc и 186Re.

Класс C01G1/04 карбонилы 

Класс C01G47/00 Соединения рения

способ получения чистого перрената аммония -  патент 2514941 (10.05.2014)
способ получения перрената аммония -  патент 2485053 (20.06.2013)
нанотехнологический способ извлечения рения из пород и руд черносланцевых формаций и продуктов их переработки -  патент 2455237 (10.07.2012)
способ фторирования дисперсных оксидов редких металлов и реактор для его осуществления -  патент 2444474 (10.03.2012)
способ извлечения и очистки рения из растворов от переработки жаропрочных сплавов -  патент 2437836 (27.12.2011)
способ извлечения рения из растворов, содержащих молибден -  патент 2427535 (27.08.2011)
способ электродиализного синтеза концентрированных растворов рениевой кислоты -  патент 2421403 (20.06.2011)
способ выделения ионов рения (vii) из водных растворов -  патент 2382670 (27.02.2010)
гексаядерные кластерные комплексы рения на основе радиоактивных изотопов, обладающие противоопухолевыми свойствами -  патент 2366434 (10.09.2009)
способ извлечения рения -  патент 2323884 (10.05.2008)

Класс C01G57/00 Соединения металлов, не указанных в предыдущих группах этого подкласса

способ получения пентаалюминида молибдена -  патент 2296714 (10.04.2007)
способ получения водорастворимого карбонильного комплекса короткоживущего технеция-99m -  патент 2294897 (10.03.2007)
способ изготовления хроматографического генератора технеция-99m из облученного нейтронами молибдена-98 -  патент 2276102 (10.05.2006)
способ выделения рутения из облученного технеция -  патент 2266871 (27.12.2005)
экстрактор с саморегулируемым уровнем раздела фаз -  патент 2234967 (27.08.2004)
способ очистки препарата рутения от технеция -  патент 2223917 (20.02.2004)
способ осаждения диоксида технеция из растворов от переработки облученного ядерного топлива атомных электростанций -  патент 2201896 (10.04.2003)
способ очистки урана (vi) от технеция (vii) -  патент 2184083 (27.06.2002)
экстракционный генератор технеция - 99 м -  патент 2161132 (27.12.2000)
способ разделения изотопов иттербия -  патент 2119816 (10.10.1998)

Класс A61K51/00 Препараты, содержащие радиоактивные вещества, для использования в терапии или для исследований на живом организме

молекулярная визуализация -  патент 2529804 (27.09.2014)
циклический октапептид, радиофармацевтическое средство на его основе и способ применения радиофармацевтического средства для получения лекарственных (фармацевтических) средств для лечения новообразований, экспрессирующих соматостатиновые рецепторы -  патент 2528414 (20.09.2014)
способ получения реагента для приготовления радиофармпрепарата на основе меченного технецием-99м ципрофлоксацина -  патент 2527771 (10.09.2014)
способ диагностики недостаточности сфинктера одди -  патент 2525210 (10.08.2014)
трициклические индольные производные в качестве лигандов pbr -  патент 2525196 (10.08.2014)
реагенты и способы введения радиоактивной метки -  патент 2524284 (27.07.2014)
способ лечения раковых опухолей -  патент 2524194 (27.07.2014)
конъюгаты антагониста пептида аналога бомбезина -  патент 2523531 (20.07.2014)
меченые молекулярные визуализирующие агенты, способы получения и способы применения -  патент 2523411 (20.07.2014)
способ получения активной фармацевтической субстанции для синтеза препаратов галлия-68 -  патент 2522892 (20.07.2014)
Наверх