охлаждаемая сопловая лопатка с вихревой матрицей

Классы МПК:F01D5/18 пустотелые лопатки; устройства для подогрева, теплоизоляции или охлаждения лопаток 
Автор(ы):, , , ,
Патентообладатель(и):Открытое акционерное общество Самарский научно-технический комплекс им.Н.Д.Кузнецова
Приоритеты:
подача заявки:
1994-12-27
публикация патента:

В лопатке поперечные ребра в дефлекторной зоне на спинке и корыте переходят (соединены) в ребра вихревой матрицы и на выходе переходят (соединены) в поперечные короткие ребра в зоне выходных кромок. Охлаждающий воздух, проходя через систему каналов, образованных ребрами, выбрасывается в выходную кромку лопатки в направлении основного газового потока благодаря поперечным коротким ребрам в зоне выходной кромки. Использование изобретения позволит повысить надежность лопатки и КПД ступени. 3 ил.
Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

Охлаждаемая сопловая лопатка с вихревой матрицей, содержащая ребра в дефлекторной зоне и в зоне выходной кромки, отличающаяся тем, что вихревая матрица выполнена в виде ребер, соединенных с ребрами в зоне дефлектора и с ребрами в зоне выходной кромки.

Описание изобретения к патенту

Изобретение относится к высокотемпературным газовым турбинам, применяемым в энергетических установках и авиационных ГТД.

На современном этапе развития газотурбинной техники разработка эффективных систем охлаждения высокотемпературных турбин является одной из актуальных проблем, решение которой имеет большое практическое значение. В настоящее время ведется интенсивная работа по усовершенствованию систем охлаждения горячих частей турбины, и в первую очередь, сопловых, рабочих лопаток, камер сгорания и дисков.

Известно, что в высокотемпературных турбинах сопловые лопатки I-ой и II-ой ступеней охлаждаемые. Широкое распространение получил конвективно-пленочный метод охлаждения сопловых лопаток I-ой ступени и конвективное охлаждение сопловых лопаток II-й ступени. В высокотемпературных авиационных ГТД наиболее широко применяются сопловые лопатки со вставным дефлектором и поперечным течением охлаждающего воздуха (см. В.П.Лукачев, В.П.Данильченко и др. "Выбор параметров и инженерные основы проектирования систем охлаждения элементов турбин авиационных ГТД", Куйбышев, 1983, с. 32, рис. 2.11).

В качестве ближайшего аналога предлагается устройство сопловой лопатки, представленной в патенте США N 3628880, кл. F 01 D 25/12, 1971 и содержащей в зоне дефлектора на внутренней поверхности стенок лопатки поперечные (относительно пера) ребра, обеспечивающие заданные проходные сечения каналов охлаждения, в зоне за дефлектором - штырьковые турболизаторы потока воздуха и в зоне выходной кромки - поперечные относительно пера ребра для уменьшения разности температур по профилю.

Ребра в зоне выходной кромки обеспечивают, кроме того, истечение охлаждающего воздуха из внутренней полости лопатки в направлении основного потока рабочего тела (газа), что существенно снижает потери его энергии на смешение.

Однако такой лопатке свойственны недостатки, снижающие надежность конструкции. При длительных испытаниях на лопатках в зоне штырьковых турболизаторов (вихревой матрицы) развиваются термоусталостные трещины. Сопловые лопатки приходится разбирать и заменять бракованные.

Целью изобретения является обеспечение надежности лопатки и повышение КПД ступени.

Указанная цель достигается выполнением вихревой матрицы в виде ребер, которые с одной стороны соединяются с ребрами в зоне дефлектора, а с другой стороны - с ребрами в зоне выходной кромки (см. фиг. 1).

На фиг. 2 и 3 представлена охлаждаемая сопловая лопатка с вихревой матрицей.

Во внутренней полости охлаждаемой сопловой лопатки 1 имеются:

- вихревая матрица 2;

- ребра 3, 4 на корыте и спинке лопатки;

- короткие ребра 5.

Ребра 3 на корыте лопатки переходят в ребра матрицы на корыте и переходят в короткие ребра 5. Ребра 4 на спинке лопатки переходят в ребра вихревой матрицы на спинке и переходят в короткие ребра 5.

Ребра вихревой матрицы на корыте и спинке лопатки расположены на расстоянии друг от друга и образуют каналы вихревой матрицы для прохода охлаждающего воздуха. Расположение ребер 3, 4 и 5 относительно друг друга зависит от выбранных геометрических параметров вихревой матрицы (шага ребер, угла наклона и т.д.).

Охлаждающий воздух по каналам между ребрами 3 на корыте и 4 на спинке поступает в каналы вихревой матрицы и выбрасывается в выходную кромку лопатки через каналы между ребрами 5.

Соединение ребер выходной матрицы с ребрами в зоне выходной кромки необходимо по следующим причинам:

- при наличии технологических ограничений на минимальную толщину стержня в зоне выходной кромки лопатки ~0,6 мм. В случае отсутствия ребер в зоне выходной кромки, площадь канала для охлаждающего воздуха после выхода из вихревой матрицы резко увеличивается в 2 раза. При этом падает скорость течения охлаждающего воздуха и уменьшается глубина охлаждения. Наличие ребер в зоне выходной кромки позволяет обеспечить требуемую площадь канала. Кроме того, в результате сохранения высокой скорости истечения воздуха и направления его по газовому потоку повышается КПД ступени.

Класс F01D5/18 пустотелые лопатки; устройства для подогрева, теплоизоляции или охлаждения лопаток 

рабочая лопатка турбины газотурбинного двигателя -  патент 2529273 (27.09.2014)
способ охлаждения рабочих лопаток турбины двухконтурного газотурбинного двигателя и устройство для его осуществления -  патент 2525379 (10.08.2014)
теплотрубный контур охлаждения лопатки турбины -  патент 2522156 (10.07.2014)
охлаждаемая турбина газотурбинного двигателя -  патент 2519678 (20.06.2014)
способ и устройство тангенциально смещающего внутреннего охлаждения на направляющей лопатке сопла -  патент 2518775 (10.06.2014)
охлаждаемая турбина -  патент 2518768 (10.06.2014)
охлаждаемая турбина -  патент 2518729 (10.06.2014)
охлаждаемая турбина -  патент 2514818 (10.05.2014)
кольцевой неподвижный элемент для использования с паровой турбиной и паровая турбина -  патент 2511914 (10.04.2014)
охлаждаемая рабочая лопатка газовой турбины -  патент 2506429 (10.02.2014)
Наверх