способ получения катализатора окисления оксида углерода

Классы МПК:B01J37/04 смешивание
B01J23/84 с мышьяком, сурьмой, висмутом, ванадием, ниобием, танталом, полонием, хромом, молибденом, вольфрамом, марганцем, технецием или рением
Автор(ы):, , , ,
Патентообладатель(и):Открытое акционерное общество "Электростальский химико- механический завод"
Приоритеты:
подача заявки:
1997-10-07
публикация патента:

Изобретение относится к области очистки газов от вредных примесей и может быть использовано, в частности, для приготовления катализатора, применяемого для очистки газовых смесей от оксида углерода в системах коллективной и индивидуальной защиты органов дыхания и выбросах промышленных предприятий, для очистки выхлопных газов двигателей внутреннего сгорания, а также для других индустриальных и природоохранных целей. Предложен способ получения катализатора окисления оксида углерода, включающий смешение диоксида марганца и основного карбоната меди со связующим бентонитовой глиной, формование гранул, сушку, дробление и термообработку. Предложенный способ позволяет получить катализатор, значительно превосходящий известные по каталитической активности в окислении оксида углерода.

Формула изобретения

Способ получения катализатора окисления оксида углерода, включающий смешение диоксида марганца и кислородосодержащего соединения меди со связующим бентонитовой глиной, формование гранул, сушку, дробление и термообработку, отличающийся тем, что в качестве кислородосодержащего соединения меди беру основной карбонат меди.

Описание изобретения к патенту

Изобретение относится к области очистки газов от вредных примесей и может быть использовано для приготовления катализатора, применяемого для очистки газовых смесей от оксида углерода в системах коллективной и индивидуальной защиты органов дыхания и выбросах промышленных предприятий, для очистки выхлопных газов двигателей внутреннего сгорания, а также для других индустриальных и природоохранных целей.

Известен способ получения катализатора для очистки газовых смесей от токсичных примесей, в частности, от оксида углерода, включающий добавление к виброизмельченному порошку активной окиси алюминия марки А-1 раствора нитрата меди, формование в шнек-грануляторе с диаметром фильеры 2,0-2,5 мм, термообработку полученных гранул при температуре 280-300oC в течение 3-4 часов с последующей пропиткой раствором нитрата марганца и повторную термообработку (А.С. СССР N 986482 от 31.03.80 г., кл. B 01 J 23/84, B 01 D 53/36).

Недостатком известного способа является сложность проведения технологического процесса приготовления катализатора, обусловленная необходимостью пропитки термообработанных гранул катализатора раствором нитрата марганца и последующей термообработкой.

Известен также способ получения катализатора окисления оксида углерода из выхлопных или дымовых газов, включающий смешивание оксидов марганца, меди и алюминия в соотношении 7 : 3 : 10 в сухом виде, затем добавление воды для образования пастообразной массы и ее проминание длительное время с образованием равномерной массы, проминание последней досуха, формование, сушку полученных гранул и пиролиз при температуре 500-600oC в течение 1-2 ч с полным удалением воды (Пат. Японии N 51-48155 от 09.03.72 г., кл. B 01 J 23/84).

Недостатками данного способа являются длительность процесса получения равномерной массы смеси оксидов марганца, меди и алюминия в сухом виде и недостаточно высокая каталитическая активность полученного катализатора в окислении оксида углерода.

Наиболее близким к предложенному по технической сущности и количеству совпадающих признаков является способ получения катализатора окисления оксида углерода, включающий смешение диоксида марганца и оксида меди со связующим бентонитовой глиной в виде водной суспензии, формование гранул, сушку, дробление и термообработку в кипящем слое при отношении объема гранул катализатора к объему подаваемого воздуха 1:(3000-15000) (Пат. РФ N 2054322 от 01.03.93 г., кл. B 01 J 37/04, 23/84).

Недостатком указанного способа является низкая каталитическая активность полученного катализатора в окислении оксида углерода.

Целью изобретения является повышение каталитической активности катализатора в окислении оксида углерода.

Поставленная цель достигается предложенным способом, включающим смешение диоксида марганца и кислородсодержащего соединения меди со связующим бентонитовой глиной, формование гранул, сушку, дробление и термообработку.

Отличие предложенного способа от известного заключается в том, что в качестве кислородосодержащего соединения меди берут основной карбонат меди.

Способ осуществляется следующим образом.

Смешивают диоксид марганца и основной карбонат меди со связующим бентонитовой глиной. Полученную пасту формуют на шнек-грануляторе при давлении 35-45 атм. и температуре 100-120oC. Сформованные гранулы сушат при температуре 20-50oC, дробят, отсеивают фракцию 1-3 мм и проводят термообработку при температуре 250-350oC. Состав катализатора: диоксид марганца 50-70 мас.%, оксид меди 10-30 мас.%, бентонитовая глина 5-15 мас.%, примеси - остальное. Каталитическая активность в окислении оксида углерода составила 2,85-2,94 ммоль/г. Каталитическая активность в окислении оксида углерода для катализатора, полученного по известному способу, составила 1,28-1,42 ммоль/г.

Пример 1. Берут 1,55 кг пасты диоксида марганца с влажностью 50%, 0,32 кг основного карбоната меди, 0,12 кг связующего бентонитовой глины, загружают в смеситель, добавляют 2 л воды и перемешивают в течение 1 ч. Полученную суспензию фильтруют, выгружают в лопастной смеситель с паровой рубашкой и ведут процесс пластификации в течение 15 минут до влажности 30%. На шнек-грануляторе формуют гранулы, сушат их при температуре 50oC в течение 8 ч. Высушенные гранулы дробят, отсеивают фракцию 1-3 мм и проводят термообработку в кипящем слое воздухом при температуре 300oC. Полученный катализатор имеет следующий состав: диоксид марганца - 70 мас.%, оксид меди - 10 мас.%, бентонитовая глина - 10 мас.%, примеси - остальное. Каталитическая активность в окислении оксида углерода составила 2,85 ммоль/г.

Пример 2. Ведение процесса как в примере 1, за исключением количества взятой пасты диоксида марганца, которое составило 1,33 кг, и количества взятого основного карбоната меди, которое составило 0,57 кг. Полученный катализатор имеет следующий состав: диоксид марганца - 60 мас.%, оксид меди - 20 мас. %, бентонитовая глина - 10 мас.%, примеси - остальное. Каталитическая активность в окислении оксида углерода составила 2,94 ммоль/г.

Пример 3. Ведение процесса как в примере 1, за исключением количества взятой пасты диоксида марганца, которое составило 1,10 кг, и количества взятого основного карбоната меди, которое составило 0,89 кг. Полученный катализатор имеет следующий состав: диоксид марганца - 50 мас.%, оксид меди - 30 мас.%, бентонитовая глина - 10 мас.%, примеси - остальное. Каталитическая активность в окислении оксида углерода составила 2,91 ммоль/г.

Как следует из приведенных выше примеров, предложенный способ позволяет получить катализатор, значительно превосходящий катализатор, полученный по известному способу.

Сущность предложенного способа заключается в следующем.

Повышение каталитической активности в окислении оксида углерода при использовании в качестве кислородсодержащего соединения меди основного карбоната меди обусловлено, вероятно, следующей причиной. Результатом термической обработки основного карбоната меди при температуре 250-350oC является его разложение и образование оксида меди, который, наряду с диоксидом марганца, является каталитически активным компонентом. При этом разложение частиц основного карбоната меди, находящихся в поверхностном слое гранул катализатора, приводит к тому, что на внешней поверхности гранул имеет место формирование характерного микрорельефа и дополнительное развитие внешней поверхности гранул, которая в значительной степени определяет активность катализатора, что и приводит в конечном итоге к повышению каталитической активности в окислении оксида углерода.

Таким образом, предложенный способ позволяет получить катализатор, значительно превосходящий известные по каталитической активности в окислении оксида углерода.

Этот катализатор позволит проводить более эффективную очистку газовых смесей от оксида углерода в системах коллективной и индивидуальной защиты органов дыхания, выбросах промышленных предприятий, выхлопных газах двигателей внутреннего сгорания и даст возможность эффективно решить широкий круг экологических и технологических проблем.

Из изложенного следует, что каждый из признаков заявленной совокупности в большей или меньшей степени влияет на достижение поставленной цели, а именно: на повышение каталитической активности катализатора в окислении оксида углерода, а вся совокупность является достаточной для характеристики заявленного технического решения.

Класс B01J37/04 смешивание

способ получения сольвата хлорида неодима с изопропиловым спиртом для неодимового катализатора полимеризации изопрена -  патент 2526981 (27.08.2014)
способ карбонилирования с использованием связанных содержащих серебро и/или медь морденитных катализаторов -  патент 2525916 (20.08.2014)
микросферический катализатор крекинга "октифайн" и способ его приготовления -  патент 2522438 (10.07.2014)
способ получения наноструктурного фталоцианинового катализатора демеркаптанизации нефти и газоконденсата -  патент 2517188 (27.05.2014)
катализатор на основе меди, нанесенный на мезопористый уголь, способ его получения и применения -  патент 2517108 (27.05.2014)
каталитическая добавка для повышения октанового числа бензина каталитического крекинга и способ ее приготовления -  патент 2516847 (20.05.2014)
способ приготовления катализатора для получения ароматических углеводородов, катализатор, приготовленный по этому способу, и способ получения ароматических углеводородов с использованием полученного катализатора -  патент 2515511 (10.05.2014)
способ приготовления катализатора для окислительной конденсации метана, катализатор, приготовленный по этому способу, и способ окислительной конденсации метана с использованием полученного катализатора -  патент 2515497 (10.05.2014)
способ переработки биомассы в целлюлозу и раствор низкомолекулярных продуктов окисления (варианты) -  патент 2515319 (10.05.2014)
каталитическая добавка для окисления оксида углерода в процессе регенерации катализаторов крекинга и способ ее приготовления -  патент 2513106 (20.04.2014)

Класс B01J23/84 с мышьяком, сурьмой, висмутом, ванадием, ниобием, танталом, полонием, хромом, молибденом, вольфрамом, марганцем, технецием или рением

способ получения катализатора синтеза углеводородов и его применение в процессе синтеза углеводородов -  патент 2502559 (27.12.2013)
цеолитсодержащий катализатор, способ его получения и способ переработки прямогонного бензина в высокооктановый компонент бензина с пониженным содержанием бензола -  патент 2498853 (20.11.2013)
катализатор для получения метилмеркаптана -  патент 2497588 (10.11.2013)
цеолитсодержащий катализатор, способ его получения и способ превращения прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола -  патент 2493910 (27.09.2013)
катализатор гидродеоксигенации кислородорганических продуктов переработки растительной биомассы и процесс гидродеоксигенации с применением этого катализатора -  патент 2472584 (20.01.2013)
шариковый катализатор для гидроочистки нефтяных фракций и способ его приготовления -  патент 2472583 (20.01.2013)
способ аммоксимирования -  патент 2453535 (20.06.2012)
способ изготовления пористого гранулированного катализатора -  патент 2453367 (20.06.2012)
катализатор парового риформинга углеводородов и способ его получения -  патент 2446879 (10.04.2012)
катализатор и процесс гидродеоксигенации кислородорганических продуктов переработки растительной биомассы -  патент 2440847 (27.01.2012)
Наверх