способ получения сложных эфиров на основе 2,2,4-триметил-3- гидроксипентилизобутирата

Классы МПК:C07C67/08 реакцией карбоновых кислот или симметричных ангидридов с оксигруппой или металл-кислородной группой органических соединений
C07C69/34 эфиры ациклических насыщенных поликарбоновых кислот с этерифицированной карбоксильной группой, связанной с ациклическим атомом углерода
C07C69/80 эфиры фталевой кислоты
Автор(ы):, , ,
Патентообладатель(и):Общество с ограниченной ответственностью "Инновационный центр технико-экономических исследований и коммерции"
Приоритеты:
подача заявки:
1995-06-09
публикация патента:

Изобретение относится к получению сложных эфиров, в том числе полиэфиров, применяемых в качестве пластификаторов полимеров. Способ состоит в этерификации адипиновой кислотой или фталевым ангидридом смеси 2,2,4-триметил-3-гидроксипентилизобутирата (ГПБ) с 2,2,4-триметилпентандиолом-1,3 (ПД) в мольном соотношении двух последних реагентов 1 : (6 - 9) при температуре 80 - 210oC в присутствии 0,005 - 5,000% от массы кислоты или ангидрида тетраалкоксититанового катализатора (тетрабутоксититанат, или тетраизопропоксититанат, или их смесь). Соотношение адипиновой кислоты или фталевого ангидрида и суммы ГПБ и ПД составляет 1 : (2,1 - 2,6). Вместо чистого ПД может быть использована его смесь с 2-этилгексанолом в мольном соотношении 1 : (1,0 - 10,0). Очистку продукта производят известным методом, включающим нейтрализацию щелочным агентом, обработку перегретым паром, отгонку воды и фильтрацию. Способ позволяет повысить выход целевого продукта до 98,7% (повышение выхода на 2,5 - 11%), упростить и удешевить аппаратурное оформление процесса, увеличить съем готовой продукции с единицы объема на 10%, снизить категорийность производства по взрывопожароопасности, исключить применение повышенных мер безопасности для обслуживающего персонала, упростить технологию процесса. 3 з.п.ф-лы, 1 табл.
Рисунок 1

Формула изобретения

1. Способ получения сложных эфиров на основе 2,2,4-триметил-3-гидроксипентилизобутирата этерификацией последнего адипиновой кислотой или фталевым ангидридом при нагревании в присутствии амфотерного катализатора, содержащего элемент переменной валентности, с последующей очисткой продукта, включающей нейтрализацию щелочным агентом, обработку перегретым паром, отгонку реакционной воды и фильтрацию, отличающийся тем, что в качестве амфотерного катализатора используют тетраалкоксититановый катализатор, взятый в количестве 0,005 - 5,0% от массы кислоты или ангидрида, и процесс проводят в присутствии 2,2,4-триметилпентадиола-1,3 или его смеси с 2-этилексанолом при мольном соотношении 2,2,4-триметилпентандиола-1,3 к 2,2,4-триметил-3-гидроксипентилизобутирату 1 : 6 - 9 соответственно и при мольном соотношении адипиновой кислоты или фталевого ангидрида к сумме молей 2,2,4-триметил-3-гидроксипентилизобутирата и 2,2,4-триметилпентандиола-1,3 или его смеси с 2-этилгексанолом 1 : 2,1 - 2,6 соответственно.

2. Способ по п. 1, отличающийся тем, что применяют 2,2,4-триметилпентандиол-1,3 в смеси с 2-этилгексанолом в мольном соотношении 1 : 1 - 10.

3. Способ по пп. 1 и 2, отличающийся тем, что процесс ведут в интервале температур 80 - 210oC.

4. Способ по пп. 1 - 3, отличающийся тем, что в качестве тетраалкоксититанового катализатора применяют тетрабутоксититанат, или тетраизопропоксититанат, или их смеси.

Описание изобретения к патенту

Изобретение относится к технологии органического синтеза, в частности к получению сложных эфиров, в том числе полиэфиров, применяемых в качестве пластификаторов полимеров, этерификацией полуэфира-2,2,4-триметил-3-гидроксипентилизобутирата (ГПБ), содержащего свободную вторичную гидроксильную группу, адипиновой кислотой или фталевым ангидридом.

Известно, что 2,2,4-триалкил-3-гидроксипентилалканоаты, в том числе ГПБ, могут быть этерифицированы карбоновыми кислотами или ангидридами кислот в присутствии катализаторов, обычно применяемых при этерификации, например соляной или серной кислот, хлорида олова. Однако прямая этерификация или переэтерификация упомянутого моноэфира гликоля, имеющего в своем составе вторичную гидроксильную группу, сопровождается рядом нежелательных побочных реакций: дегидратацией, циклизацией, перегруппировкой карбониевого иона.

Указанные выше побочные процессы имеют место и при использовании таких известных катализаторов этерификации, как арилсульфоновые кислоты, аклоксиды титана и цинка, галогениды олова или алюминия.

Наилучшие результаты в части выхода и качества диэфиров и полиэфиров на основе ГПБ получены при проведении их этерификации карбоновыми кислотами в присутствии в качестве катализаторов нейтральных или основных соединений двух- или четырехвалентного олова, в которых неметаллический атом присоединен к атому углерода, водорода и кислорода (патент США N 3414609, с. 2, строки 20 - 55, НКИ 560 - 90, опубл. 03.12.68, прототип). К числу таких катализаторов относятся:

ди- и тетра алкил (арил) соединения: дибутилолово, дигексилолово, дифенилолово, тетрафенилолово и др., ди- и тетрабутоксиды олова, смешанные алкилоловоалкоксиды (дибутилоловодибутоксид), соли алкилолова, имеющие алкил- или ацилоксирадикалы, присоединенные к атому олова (дибутилоловодиацетат, дибутилоловади-2-этилгексаноат), соединения олова, в которых два алкилрадикала заменены кислородом (диметилоловооксид), дибутилоловооксид, дигептилоловооксид, диоктилоловооксид.

Использование перечисленных катализаторов позволяет получать диэфиры и полиэфиры моноэфиров типа ГПБ практически без побочных реакций и, следовательно, с улучшенным выходом (более 90%: в примерах 95 - 97%), с хорошей цветностью и практически без запаха.

В соответствии со способом по прототипу для этерификации может быть использован очень широкий круг кислот - любые алифатические, алициклические или ароматические моно- или дикарбоновые кислоты, включая кислоты, содержащие галоген-, кислород-, серу- или азотсодержащие заместители. Предпочтительные кислоты - адипиновая, фталевая, азелаиновая, малеиновая.

Процесс осуществляется путем смещения кислоты и моноэфира гликоля и нагревания в реакционном сосуде с катализатором в течение от 4 до 24 ч (в зависимости от типа исходных реагентов). Молярное соотношение моноэфира гликоля и кислоты составляет 1:1 для дикарбоновой кислоты. Использование избытка моноэфира гликоля увеличивает скорость реакции. Поэтому предпочтительное соотношение (моль) моноэфира гликоля и одноосновной кислоты 5:4, а в случае двухосновной кислоты 5:2. Концентрация катализатора от 0,001 до 1%. Температура процесса от 50 до 250oC при атмосферном давлении (хотя могут быть использованы и более высокие и более низкие давления). Процесс ведется в присутствии инертных разбавителей, таких как диэтиловый эфир, диизопропиловый эфир, этилендихлорид, бензол, толуол, ксилол или другие подходящие растворители, образующие с выделяющейся в ходе реакции водой азеотропную смесь, т.е. позволяющие удалить воду и содействующие поддержанию желаемой температуры. Оптимальная температура, обеспечивающая лучшее сочетание скорости процесса и цветности полученного продукта, 120 - 210oC.

После того как почти вся кислота прореагирует, сырой эфир обрабатывают инертным газом (пар или метан) для удаления следов низкокипящих продуктов, промывают разбавленной щелочью для удаления остаточной кислотности, сушат и отфильтровывают полученный продукт.

При непрерывной схеме иногда желательно реакционный продукт сначала подвергнуть щелочной промывке, потом водной. Азеотропообразующий агент, удаляемый с низкокипящими продуктами, рециклизуется в процесс. Затем продукт сушат и фильтруют.

Приведенная технология касается получения широкого круга эфиров на основе ГПБ безотносительно использованных кислот.

Однако наибольший интерес с точки зрения потребительских свойств и рентабельности производства представляют производные адипиновой кислоты и фталевого ангидрида. В конкретных случаях получения эфиров с применением адипиновой кислоты или фталевого ангидрида выход целевого продукта составляет 96 и 87% соответственно.

Задачи, на решение которых направлено предлагаемое изобретение, - повышение выхода целевого продукта; упрощение технологии и технологического оформления процесса и улучшение экологических характеристики процесса за счет отказа от использования высокотоксичных, легковоспламеняющихся органических растворителей.

Перечисленные выше задачи решаются тем, что в способе получения эфиров на основе 2,2,4-триметил-3-гидроксипентилизобутирата этерификацией последнего адипиновой кислотой или фталевым ангидридом при нагревании в присутствии тетралкоксититанового катализатора с последующей очисткой продукта, включающей нейтрализацию щелочным агентом, обработку перегретым паром, отгонку реакционной воды и фильтрацию, в исходную смесь дополнительно вводят 2,2,4-триметилпентандиол-1,3 мольном соотношении 1:(6-9) к 2,2,4-триметил-3-гидроксипентилизобутирату соответственно при соотношении адипиновой кислоты или фталевого ангидрида к сумме 2,2,4-триметил-3-гидроксипентилизобутирата и 2,2,4-триметилпентандиола-1,3 1:(2,1 - 2,6).

2,2,4-триметилпентандиол-1,3 применяют или в чистом виде, или в смеси с 2-этилгексанолом в мольном соотношении 1:(1,0 - 10,0).

При этом процессе синтеза (этерификацию или переэтерификацию) осуществляют в интервале температур 80 - 210oC.

В качестве тетраалкоксититанового катализатора могут быть применены тетрабутоксититанат, тетраизопропоксититанат или их смеси в любом соотношении. Количество катализатора 0,005 - 5,000%, предпочтительно 0,15 - 0,20% от количества кислоты или ангидрида.

Процесс этерификации (переэтерификации) с отгоном азеотропа воды и спирта осуществляется в одну стадию при одновременной загрузке всех реагентов при постепенном подъеме температуры в интервале 80 - 210oC сначала при атмосферном давлении с последующим созданием в системе вакуума 600 - 100 мм рт. ст. Реакцию ведут до достижения кислотного числа не более 6 мг KOH/г вещества. После удаления избытка спиртов, осуществляемого путем углубления вакуума от 100 до 5 мм рт.ст., проводят очистку целевого продукта по обычно применяемой методике, включающей реакционной массы обработкой ее щелочным агентом, предпочтительно 1-3%-ным раствором кальцинированной соды в количестве 10 - 15 мас.% от эфира при 50 - 80oC, обработку перегретым паром, отгонку воды, при необходимости обработку сорбентами, и фильтрацию.

Пример 1. В четырехгорлую колбу, снабженную мешалкой, термометром, ректификационной колонкой, ловушкой Дина-Старка, трубкой для подачи азота, холодильником и приемником для сбора образующейся при этерификации воды, загружают 146,0 г (1 моль адипиновой кислоты, 538,85 г (2,6 моль) смеси: 491,4 г (2,275 моль) ГПБ и 47,45 г (0,325 моль) 2,2,4-триметилпентандиола-1,3-(ПД) (в соотношении ПД : ГПБ = 1:7), 0,29 г (8,6способ получения сложных эфиров на основе 2,2,4-триметил-3-  гидроксипентилизобутирата, патент № 211409910-4 моль) (0,2% от массы адипиновой кислоты) тетрабутоксититаната (ТБТ). Мольное соотношение адипиновой кислоты и смеси ГПБ и ПД 1:2,6. Подключают ток азота. Затем включают мешалку и нагревают реакционную массу в интервале температур 80 - 210oC, постепенно углубляя вакуум до 100 мм рт.ст. Пары, образующиеся в процессе реакции, поступают в ректификационную колонку, затем в холодильник, откуда конденсат направляется в ловушку Дина - Старка, из которой воду периодически сливают в приемник, в спиртовой компонент с верхнего уровня ловушки непрерывно возвращается в реакционную колбу. Процесс этерификации (переэтерификации) проводят до прекращения выделения реакционной воды. Кислотное число реакционной массы 6 мг KOH/г вещества. Затем вакуум постепенно углубляют до остаточного давления 5 мм рт.ст. и производят отгонку избыточного количества спиртового компонента. Продолжительность синтеза 7 ч.

Далее эфир-сырец обрабатывают перегретым паром, затем охлаждают до 80oC, отключают вакуум, добавляют 3%-ный раствор кальцинированной соды в количестве 54 г (10% от реакционной массы). Содержимое колбы перемешивают при 80oC и атмосферном давлении в течение 0,5 ч, после чего вводят 1,08 г (0,2% от реакционной массы) активированного угля и при 80oC и остаточном давлении 300 мм рт.ст. проводят обработку реакционной массы сорбентом в течение 0,5 ч. Далее повышают температуру до 120oC, углубляют вакуум до остаточного давления 5 мм рт.ст., отгоняют воду и затем содержимое колбы фильтруют. Выход готового продукта 98,5%, кислотное число 1,0 мг KOH/г вещества.

В таблице представлены сведения по составу исходной смеси, параметра синтеза и свойствам готового продукта по примерам 2 - 7 (в сравнении с прототипом).

Предложенный способ обеспечивает повышение выхода целевого продукта на 2,5 - 11%, что в условиях многотоннажного производства дает значительный экономический эффект. Так, в соответствии с примером 1 съем готового продукта (при затрате 1 т кислоты) увеличивается на 70 кг, что при повременном уровне цен дает за 1 мес экономию в 25 млн. руб. при объеме производстве 500 т год.

При использовании смеси гидроксилсодержащих компонентов-2,2,4-триметил-3-гидроксипентилизобутирата, 2,2,4-триметилпентандиола-1,3,2-этилгексанола вместо индивидуального соединения имеет место лучшая совместимость смесевого продукта при его использовании в качестве пластификатора виниловых полимерных материалов. Следствием этого является улучшение эластичности при низких температурах эксплуатации, снижение критической температуры растворения полимера в пластификаторе.

Отказ от использования высокотоксичных легковоспламеняющихся растворителей позволяет:

упростить и удешевить аппаратурное оформление процесса, так как не требуется использования оборудования с большой поверхностью охлаждения и низкими температурными характеристиками (минусовыми) хладоагентов, необходимых для конденсации паров растворителей с низкими температурами кипения - порядка 40, 80, 110oC (соответственно для диэтилового эфира, бензола, толуола, использование которых иллюстрируется примерами по прототипу);

увеличить полезный объем реакторов синтеза и, как следствие, увеличить съем готовой продукции с единицы объема на способ получения сложных эфиров на основе 2,2,4-триметил-3-  гидроксипентилизобутирата, патент № 211409910%;

снизить категорийность производства по взрывопожароопасности, что, в свою очередь, приводит к значительному снижению затрат;

исключить необходимость повышенных мер безопасности для обслуживающего персонала;

упростить технологию процесса за счет исключения стадии отгонки растворителя.

Класс C07C67/08 реакцией карбоновых кислот или симметричных ангидридов с оксигруппой или металл-кислородной группой органических соединений

сложный эфир диола с полиненасыщенной жирной кислотой как средство против угрей (акне) -  патент 2524779 (10.08.2014)
способ синтеза биоресурсных сложных эфиров акриловой кислоты -  патент 2514422 (27.04.2014)
способ получения высокочистой метакриловой кислоты -  патент 2501782 (20.12.2013)
способ получения эфирной присадки к глубоко гидроочищенному дизельному топливу -  патент 2493238 (20.09.2013)
способ переработки сивушного масла -  патент 2471769 (10.01.2013)
диметакриловые эфиры димеризованной жирной кислоты -  патент 2453531 (20.06.2012)
способ получения алкоксиполиоксиалкилен(мет)акрилатов -  патент 2440970 (27.01.2012)
ферментативное получение сложных эфиров (мет)акриловой кислоты -  патент 2431673 (20.10.2011)
способ получения 11(е)-тетрадецен-1-илацетата -  патент 2429220 (20.09.2011)
способ получения базового масла -  патент 2427564 (27.08.2011)

Класс C07C69/34 эфиры ациклических насыщенных поликарбоновых кислот с этерифицированной карбоксильной группой, связанной с ациклическим атомом углерода

Класс C07C69/80 эфиры фталевой кислоты

способ получения (13c2-карбонил)диметилфталата -  патент 2470008 (20.12.2012)
способ этанолиза поли(этилентерефталата) (пэт) с образованием диэтилентерефталата -  патент 2458946 (20.08.2012)
смеси изомерных изонониловых эфиров бензойной кислоты, способ их получения, их смеси с алкиловыми эфирами фталевой, адипиновой или циклогександикарбоновой кислоты, а также применение этих смесей -  патент 2335489 (10.10.2008)
способ получения сложных эфиров карбоновых кислот -  патент 2283299 (10.09.2006)
способ получения пластификатора -  патент 2235716 (10.09.2004)
способ получения диэтилового эфира фталевой кислоты -  патент 2158729 (10.11.2000)
способ получения бутилбензилфталата -  патент 2143421 (27.12.1999)
способ получения сложных эфиров на основе 2-этилгексанола -  патент 2114819 (10.07.1998)
способ получения сложных эфиров -  патент 2114100 (27.06.1998)
способ получения высокомолекулярных сложных эфиров карбоновых кислот -  патент 2079481 (20.05.1997)
Наверх