способ нанесения плазменного покрытия

Классы МПК:C23C14/06 характеризуемые покрывающим материалом
C23C4/10 оксиды, бориды, карбиды, нитриды, силициды или их смеси
Автор(ы):,
Патентообладатель(и):Институт химии твердого тела Уральского отделения РАН
Приоритеты:
подача заявки:
1996-07-22
публикация патента:

Изобретение относится к нанесению покрытий из керамико-металлических порошков на детали. Способ нанесения плазменного покрытия включает ввод в плазменную струю шихты на основе самофлюсующегося сплава, содержащей 28 - 45 мас. % тугоплавкого соединения титана, имеющего плотность ниже 5,16 г/см3, и напыление ее на деталь. Тугоплавкое соединение может быть выбрано из группы, включающей карбид титана, карбонитрид титана, диборид титана, диборид титана - хрома. Порошки могут быть как стандартными, так и сфероидизированными. 1 з.п.ф-лы, 1 табл.
Рисунок 1

Формула изобретения

1. Способ нанесения плазменного покрытия, включающий ввод в плазменную струю шихты на основе самофлюсующегося сплава и тугоплавкого соединения титана и напыление, отличающийся тем, что в качестве тугоплавкого соединения титана используют 28 - 45 мас.% тугоплавкого соединения, имеющего плотность ниже 5,16 г/см3.

2. Способ по п.1, отличающийся тем, что тугоплавкое соединение титана выбирают из группы, включающей карбид титана, карбонитрид титана, диборид титана, диборид титана - хрома как стандартные, так и сфероидизированные.

Описание изобретения к патенту

Изобретение относится к порошковой металлургии, в частности к нанесению покрытий из керамико-металлических порошков на детали.

Известен способ нанесения плазменных покрытий из сплавов системы Co-Cr-B-Si различных составов путем напыления газоплазменным методом с последующим оплавлением поверхности (Heganas, Metal Spray Powders, Sweden, HMSP, 1980, 51 p.). В известном способе при оплавлении из покрытия удаляются поры за счет всплывания шлаковых включений B2O3, SiO2, остаточная пористость 10-15%. К недостаткам способа относится высокая остаточная пористость.

Известен способ нанесения плазменных покрытий, включающий ввод в плазменную струю шихты на основе самофлюсующегося сплава и твердой составляющей, в качестве которой используют 10-40 мас.% нитрида титана, и напыление в газовоздушной плазменной струе мощностью 30-46 кВА (авт.св. СССР N 1798376, кл. C 23 C 4/06, 4/08, 1993). Известный способ обеспечивает высокую относительную износостойкость покрытия, равную 1,15-2,50 по сравнению с закаленной сталью 50 (HRC= 52-54 ед.) при низкой пористости (5-8%). Однако, известный способ на дает возможности регулировать уровень свойств плазменного покрытия в заданных пределах, то есть получать покрытие с оптимальными рабочими характеристиками.

Задача изобретения - разработать способ нанесения плазменного покрытия, который бы обеспечивал получение покрытия с заранее заданными и воспроизводимыми рабочими характеристиками (пористость, износостойкость).

Поставленная задача решена в способе нанесения плазменного покрытия, включающем ввод в плазменную струю шихты на основе самофлюсующего сплава и тугоплавкого соединения титана и напыление, в котором в качестве тугоплавкого соединения титана используют 28-45 мас.% тугоплавкого соединения, имеющего плотность ниже 5,16 г/см3.

При этом тугоплавкое соединение титана может быть выбрано из группы, включающей карбид титана, карбонитрид титана, диборид титана, диборид титана -хрома, как стандартные, так и сфероидизированные.

В настоящее время из патентной и научно-технической литературы не известно использование в способе нанесения плазменного покрытия в качестве тугоплавкого соединения, имеющего плотность ниже 5,16 г/см3, в количестве 28-45 мас.%.

В предлагаемом способе использование в качестве тугоплавкой добавки соединения титана, имеющего плотность ниже 5,16 г/см3, в количестве 28-45 мас. % позволяет получить скорость всплывания указанных частиц в 10 и более раз выше, чем скорость всплывания шлаковых включений, образующихся в процессе оплавления плазменного покрытия. Кроме того, создаются условия, при которых соотношение площади поверхности тугоплавких частиц к объему расплава составляет 700-1500 1/см. Процесс оплавления ведет к образованию шлаковых включений благодаря способности бора и кремния восстанавливать оксиды большинства металлов. Боротермическое восстановление оксидов никеля и хрома при нагревании в вакууме активно протекает уже в низкотемпературной области 400-500oC (NiO-B), 700-800oC (Cr2O3-B). Кремнетермическое восстановление тех же оксидов в аналогичных условиях нагревания протекает медленно и не зафиксировано до 1100oC. Таким образом, при формировании металлокерамических покрытий на основе самофлюсующегося сплава решающая роль как восстановителя оксидных пленок принадлежит бору. Поэтому шлаковые включения по своему составу представляют собой легированное боратное стекло, что позволяет при использовании предлагаемой тугоплавкой добавки управлять механизмом всплывания шлаковых включений, а, следовательно, процессом формирования плазменного покрытия. Таким образом, возникает возможность получения покрытий с заранее заданными рабочими характеристиками.

Использование в предлагаемом способе в качестве добавки тугоплавкого соединения титана, имеющего плотность ниже 5,16 г/см3, позволяет реализовать механизм кинематической коагуляции удаления шлаковых включений: тугоплавкие частицы, обладающие указанной плотностью и имеющие вследствие этого скорость всплывания, как было указано выше, в 10 и более раз, превышающую скорость всплывания шлаковых включений и являющиеся сорбентом, адсорбируют на своей поверхности шлаковые включения, встречающиеся на их пути в процессе их всплывания. В случае использования в качестве добавки тугоплавкого соединения, имеющего плотность выше 5,16 г/см3, тугоплавкие частицы не всплывают.

Использование в предлагаемом способе 28-45 мас.% тугоплавкого соединения позволяет получить оптимальное соотношение между площадью поверхности тугоплавких частиц и объемом расплава, которое в данном случае равно 700-1500 1/см. Уменьшение количества тугоплавкой добавки менее 28 мас.% приводит к увеличению содержания шлаковых включений в напыленном слое, что обусловлено неполным протеканием сорбционных процессов вследствие недостаточной площади сорбента. Превышение верхнего предела более 45 мас.% приводит к повышению вязкости самофлюсующегося сплава до такой степени, что он перестает течь.

Предлагаемый способ заключается в следующем.

Для получения плазменного покрытия с заранее заданными рабочими характеристиками (износостойкость, пористость) готовят смесь, состоящую из тугоплавкого соединения титана, имеющего плотность ниже 5,16 г/см3, которое может быть выбрано из группы: карбид титана, карбонитрид титана, диборид титана, диборид титана-хрома как стандартных, так и сфероидизированных, в количестве 28-45 мас. % и самофлюсующегося сплава системы Co-Cr-B-Si или Ni-Cr-B-Si 55-72 мас. % (дисперсность порошков составляет 40-100 мкм). Смесь тщательно перемешивают и затем подают под срез газовоздушного плазмотрона для напыления на стальные образцы (ст. 3), предварительно подвергнутые дробеструйной обработке и обезжириванию Напыление проводят при мощности плазмотрона 40-60 кВА. После нанесения покрытия его подвергают оплавлению при 980-1080oC газокислородным пламенем. Пористость полученного покрытия, т.е. размер пор, оценивают на приборе ПМТ-3, из расчета 400 полей, ошибка эксперимента составляет <7%.2.

Пример 1. Необходимо получить плазменное покрытие, обладающее пористостью 3-4%, относительной износостойкостью 4,8. Для получения покрытия с указанными рабочими характеристиками готовят смесь из самофлюсующегося сплава Co-Cr-B-Si (ГОСТ ПГ-10К-01) (60 мас.%) - 60 г и диборида титана с плотностью 4,4 г/см3 40 г (40 мас.%). Смесь перемешивают в течение 30 мин в смесителе и подают под срез газовоздушного плазмотрона для напыления на стальные образцы (ст. 3), предварительно подвергнутые дробеструйной обработке и обезжириванию. Напыление проводят при мощности плазмотрона 45 кВа, толщина полученного покрытия составляет 1,0 мм. В качестве плазмообразующего газа используют смесь воздуха и природного газа при соотношении 2,5:1. После нанесения покрытия его подвергают оплавлению при 1050oC в течение 3 мин.

Получают покрытие с пористостью 3-4% и износостойкостью 4,8.

Остальные примеры осуществления способа приведены в таблице, где указаны состав покрытия и его рабочие характеристики.

Таким образом, предлагаемый способ позволяет повысить качество получаемого плазменного покрытия за счет получения покрытия с определенными заранее заданными рабочими характеристиками, что обусловлено возможностью контролировать процесс нанесения покрытия за счет управления механизмом всплывания шлаковых включений.

Класс C23C14/06 характеризуемые покрывающим материалом

покрывная система, деталь с покрытием и способ ее получения -  патент 2528930 (20.09.2014)
износостойкое защитное покрытие и способ его получения -  патент 2528298 (10.09.2014)
режущая пластина -  патент 2528288 (10.09.2014)
двухслойное износостойкое покрытие режущего инструмента -  патент 2527829 (10.09.2014)
способ образования изолирующего слоя посредством частиц с низкой энергией -  патент 2522440 (10.07.2014)
износостойкое наноструктурное покрытие -  патент 2521914 (10.07.2014)
скользящий элемент -  патент 2519181 (10.06.2014)
нано- и микроструктурное керамическое термобарьерное покрытие -  патент 2518850 (10.06.2014)
элемент скольжения -  патент 2518823 (10.06.2014)
покрывающий элемент для защиты от эрозии -  патент 2518815 (10.06.2014)

Класс C23C4/10 оксиды, бориды, карбиды, нитриды, силициды или их смеси

сплав на основе никеля для нанесения износо- и коррозионностойких покрытий микроплазменным или холодным сверхзвуковым напылением -  патент 2527543 (10.09.2014)
нанокомпозит на основе никель-хром-молибден -  патент 2525878 (20.08.2014)
способ электровзрывного напыления композиционных износостойких покрытий системы tic-mo на поверхности трения -  патент 2518037 (10.06.2014)
корундовая микропленка и способ ее получения /варианты/ -  патент 2516823 (20.05.2014)
способ нанесения теплозащитного электропроводящего покрытия на углеродные волокна и ткани -  патент 2511146 (10.04.2014)
способ диспергирования наноразмерного порошка диоксида кремния ультразвуком -  патент 2508963 (10.03.2014)
способ получения покрытия нитрида титана -  патент 2506344 (10.02.2014)
способ получения эрозионностойких теплозащитных покрытий -  патент 2499078 (20.11.2013)
композиционные материалы для смачиваемых катодов и их использование при производстве алюминия -  патент 2487956 (20.07.2013)
блок цилиндров и газотермический способ напыления покрытия -  патент 2483139 (27.05.2013)
Наверх