способ поиска электромагнитных предвестников землетрясений

Классы МПК:G01V9/00 Разведка или обнаружение способами, не отнесенными к группам  1/00
G01V3/12 с использованием электромагнитных волн 
Автор(ы):,
Патентообладатель(и):Государственное научно-производственное предприятие "Аура- Алиф"
Приоритеты:
подача заявки:
1996-01-10
публикация патента:

Изобретение относится к области геофизики и может быть применено для поиска электромагнитных предвестников землетрясений. Сущность изобретения заключается в оценке влияния аномалий электромагнитных полей, предшествующих землетрясениям, на распространение электромагнитных волн в полупроводниковом образце n-типа, размещаемого в сейсморазломе. 1 ил.
Рисунок 1

Формула изобретения

Способ поиска электромагнитных предвестников землетрясений, заключающийся в оценке влияния аномалий электромагнитных полей, предшествующих разрушительной стадии землетрясения, на распространение электромагнитных волн в среде, отличающийся тем, что в качестве такой среды применяют полупроводниковую плазму в одном из двух образцов n-типа, один из которых является эталонным и экранированным от воздействия электромагнитных полей любой природы, а другой - рабочим, помещенным в глубине сейсморазлома и защищенным от воздействия полей несейсмической природы полусферическим экраном, скорость распространения и степень затухания измерительных электромагнитных волн-геликонов в котором зависит от напряженности магнитного поля сейсмической природы, а сигнал оповещения о сейсмоопасности формируется на выходе устройства сравнения в результате нарушения идентичности измерительных электромагнитных волн, подаваемых при одинаковых условиях на входы этих двух полупроводниковых образцов.

Описание изобретения к патенту

Изобретение относится к области радиоэлектроники и преимущественно может быть использовано в сейсмологии при прогнозе землетрясений.

Известны [1] способы поиска электромагнитных предвестников землетрясений, один из которых осуществляется путем вертикального зондирования ионосферы, а другой - используя методы пассивной радиолокации. Первый из этих способов основан на измерении результата импульсного джоулевого нагрева Es-слоя ионосферы и эффективен при прогнозе достаточно сильных землетрясений. Второй служит для обнаружения электромагнитных аномалий сейсмической природы в земной коре (т.е. в ее приповерхностном слое, так как электромагнитные волны вглубь Земли распространяются с огромным затуханием).

Известен [1] также наиболее информативный способ поиска электромагнитных предвестников землетрясений, основанный на наклонном и горизонтальном радиопросвечиваниях волновода Земля-ионосфера сверхдлинными волнами (СДВ). В этом случае состояние нижней ионосферы и атмосферы на трассе передатчик - приемник анализируется по изменениям фазы и амплитуды сигналов СДВ, вызванным возмущениями концентраций заряженных частиц на трассе распространения радиоволн в результате повышения сейсмической активности в исследуемом регионе.

Однако известным способам присущи следующие недостатки:

как ионосфера, так и волновод Земля-ионосфера находятся под постоянным влиянием электромагнитных аномалий несейсмической (космической) природы, они подвержены изменениям гелио- и геомагнитной обстановки, климатических условий, вследствие которых снижается достоверность прогноза землетрясений;

отсутствие при необходимости возможности управления поиска (т.е. процессом распространения электромагнитных волн - ЭМВ) в волноводе из-за огромной скорости их распространения, а также протяженности трассы);

сравнительная сложность и дороговизна практической реализации этих способов.

Цель изобретения - повышение достоверности прогноза землетрясений, обеспечение возможности управления процессом поиска электромагнитных предвестников (ЭМП) землетрясений, упрощение аппаратуры, а также снижение ее себестоимости.

Поставленная цель достигается путем применения вместо волновода Земля-ионосфера однородных полупроводниковых образцов n-типа, помещаемых в наиболее сейсмоопасные зоны сейсморазломов контролируемой трассы и свойств распространения ЭМВ в этих образцах.

Известно [2], что в полупроводниках с примесью образуется плазма, плотность которой определяется концентрацией в них электронов или дырок (в зависимости от типа полупроводника). В отличие от газовой плазмы, существующей только при температурах в сотни и тысячи градусов Цельсия, плазма в полупроводниках может образоваться даже при температуре абсолютного нуля. Однако свойства полупроводниковой плазмы во многом похожи на свойства газовой и она обладает откликом на внешние электромагнитные воздействия;

непрозрачная (непроницаемая за счет высокой электропроводности) для ЭМВ полупроводниковая плазма, будучи помещенной в магнитное поле, становится для них прозрачной, т.е. магнитное поле сильно снижает экранирующую способность плазмы и в полупроводниковом образце вдоль направления поля могут распространятся слабозатухающие ЭМВ, получившие название геликонов, т.е. магнитное поле в полупроводниковой плазме создает своеобразный канал, по которому распространяются геликоны;

меняя ориентацию магнитного поля, можно изменять направление распространения геликоновой волны;

скорость распространения, а также затухания геликона зависит не только от концентрации носителей заряда в полупроводнике, но и от напряженности магнитного поля;

скорость геликонов на несколько порядков меньше скорости распространения ЭМВ в вакууме.

Сущность предлагаемого способа иллюстрирует схема, приведенная на чертеже. Она содержит генератор СВЧ-волн (ГСВЧ), усилитель-разветвитель (УР), эталонный (ЭППО) и рабочий (РППО) полупроводниковые образцы, устройство сравнения (УС) и функционирует следующим образом.

СВЧ-волны от генератора ГСВЧ через УР равномерно распределяются как в первый, так и во второй каналы, содержащие два одинаковых образца из полупроводникового материала. Верхний на чертеже образец (ЭППО) является эталонным и полностью экранирован от воздействия полей естественной и сейсмической природы. Нижний образец - это рабочий образец, располагаемый вблизи сейсморазлома (желательно в глубине его). Он защищен от воздействия полей несейсмической природы полусферическим экраном со стороны из возможного появления.

В этих образцах предварительно созданы два идентичных канала для распространения в них геликонов. С этой целью образцы могут быть помещены в искусственно создаваемые статические магнитные (подмагничивающиеся) поля напряженностью H0, величину которой при необходимости можно регулировать. Этой регулировкой можно достичь идентичности геликонов в обоих каналах и при необходимости управлять распространением в них ЭМВ, а также установить необходимую чувствительность устройства для поиска ЭМП землетрясений. Следовательно, в отсутствие действия полей сейсмической природы на вход УС поступают идентичные сигналы и отклик на его выходе отсутствует.

Появление магнитных полей сейсмической природы и их вариации приводят к изменению как направления распространения геликонов в рабочем образце, так и к изменению их скоростей, что, в свою очередь, приводит к нарушению идентичности волн в обоих каналах. В результате на выходе устройства сравнения появляется сигнал, который после соответствующей обработки может служить для оповещения сейсмоопасности.

В [1] приведены устройства для реализации известных способов поиска электромагнитных предвестников землетрясений. Сравнение их с предлагаемым способом реализации позволяет заключить о его технико-экономических преимуществах:

предлагаемый способ отличается простотой реализации и дешевизной;

информативные параметры в предлагаемом способе слабо подвержены влиянию возмущений электромагнитных полей несейсмической природы. Это приводит к повышению достоверности прогноза;

за счет локализации измерений можно сравнительно проще определить место ожидаемой сейсмической активности;

используемый в рассматриваемом случае метод сравнения результатов распространения ЭМВ в рабочих и эталонных образцах считается наиболее оптимальным в теории и технике измерений и позволяет улучшить показатель качества реализуемого устройства.

Класс G01V9/00 Разведка или обнаружение способами, не отнесенными к группам  1/00

способ определения палеотемператур катагенеза безвитринитовых отложений по оптическим характеристикам микрофитофоссилий -  патент 2529650 (27.09.2014)
способ определения контуров промышленного оруденения золоторудного месторождения -  патент 2523766 (20.07.2014)
способ обнаружения возможности наступления катастрофических явлений -  патент 2520167 (20.06.2014)
способ прогнозирования зон развития вторичных коллекторов трещинного типа в осадочном чехле -  патент 2520067 (20.06.2014)
способ краткосрочного прогноза землетрясений -  патент 2519050 (10.06.2014)
способы, установки и изделия промышленного производства для обработки измерений струн, вибрирующих в флюидах -  патент 2518861 (10.06.2014)
способ определения трех компонент вектора смещений земной поверхности при разработке нефтяных и газовых месторождений -  патент 2517964 (10.06.2014)
способ прогноза и поисков месторождений углеводородов в ловушках антиклинального типа по топографическим картам дневной поверхности -  патент 2517925 (10.06.2014)
способ прогнозирования землетрясений в пределах коллизионных зон континентов -  патент 2516617 (20.05.2014)
способ оценки ширины зоны динамического влияния активного разлома земной коры -  патент 2516593 (20.05.2014)

Класс G01V3/12 с использованием электромагнитных волн 

способ геоэлектроразведки в условиях техногенной инфраструктуры -  патент 2528115 (10.09.2014)
устройство обнаружения людей под завалами и поиска взрывчатых и наркотических веществ -  патент 2526588 (27.08.2014)
способ обнаружения местонахождения засыпанных биообъектов или их останков и устройство для его осуществления -  патент 2515191 (10.05.2014)
способ радиолокации объектов в слабопроводящих средах -  патент 2513671 (20.04.2014)
устройство и способ для детектирования электромагнитного излучения -  патент 2507544 (20.02.2014)
способ радиолокационного зондирования подстилающей поверхности и устройство для его осуществления -  патент 2490672 (20.08.2013)
способ георадиолокации многолетнемерзлых пород -  патент 2490671 (20.08.2013)
способ прогноза землетрясений -  патент 2488846 (27.07.2013)
способ получения радиоголограмм подповерхностных объектов -  патент 2482518 (20.05.2013)
способ геоэлектроразведки и устройство для его осуществления -  патент 2480794 (27.04.2013)
Наверх