состав для регулирования разработки нефтяных месторождений

Классы МПК:E21B43/22 с применением химикалий или бактерий
Автор(ы):, ,
Патентообладатель(и):Краснопевцева Наталия Валентиновна,
Открытое акционерное общество "Нефтяная компания Мегионнефтеотдача"
Приоритеты:
подача заявки:
1996-10-22
публикация патента:

Состав для регулирования разработки нефтяных месторождений содержит, мас. %: экзополисахарид, содержащий 1 - 30 мас.% уровных кислот и продуцируемый A3D-tobactez Vinelandii(Zipman) ФЧ-1 ВКПМ В-5933 в виде культурной жидкости 0,001-1,0, а в качестве соединения поливалентного металла хромкалиевые квасцы 0,002 - 0,04; вода - остальное. 1 табл.
Рисунок 1

Формула изобретения

Состав для регулирования разработки нефтяных месторождений, включающий полисахарид, соединение поливалентного металла и воду, отличающийся тем, что в качестве полисахарида используют экзополисахарид, содержащий 1 - 30 мас.% уроновых кислот и продуцируемый Azotobacter Uinelandii (Zipman) ФЧ-1, ВКПМ B-5933 в виде культуральной жидкости, а в качестве соединения поливалентного металла хромкалиевые квасцы при следующем соотношении компонентов, мас.%:

Экзополисахарид - 0,001 - 1,0

Хромкалиевые квасцы - 0,002 - 0,04

Вода - Остальное

Описание изобретения к патенту

Изобретение относится к нефтяной промышленности, а именно к скважинной разработке нефтяных месторождений.

Известна гелеобразующая композиция для обработки нефтяных скважин, содержащая простой эфир целлюлозы, неорганическую соль трехвалентного хрома, в частности хромокалиевые квасцы, щелочь и воду [1]. В качестве простого эфира используется оксилэтилцеллюлоза, глицидированная оксиэтилцеллюлоза или смесь карбоксиметилцеллюлозы с оксиэтилцеллюлозой и дополнительно натриевая или калиевая соль соляной или азотной кислот и натриевая или калиевая соль ортофосфорной кислоты.

Основным недостатком известной композиции является ее сложность, трудоемкость получения и дороговизна. Кроме того, мгновенное после смешения компонентов гелеобразование исключает закачку указанной композиции в низкопроницаемые глубокозалегающие коллектора.

Для изоляции притока пластовых вод в скважину используются биополимеры, например растворы гетерополисахарида,продуцируемого Xanthomonas campestris [2], Acinetobacter sp. [3].

Известны гетерополисахариды, в том числе ксантан, не обеспечивают требуемого изменения фильтрационного сопротивления при всем многообразии геологофизических условий.

Близким техническим решением к предлагаемому изобретению является состав для изоляции водопритока в скважину, содержащий водный раствор полиакриламида и в качестве сшивающего агента хромокалиевые квасцы [4].

Однако этот состав недостаточно эффективен при низкой концентрации полимера и вследствие активной адсорбции катиона хрома на пороге при высокой концентрации полимера, приводящей к снижению прочности сшитого полимера.

Повышение концентраций входящих в указанный состав компонентов недопустимо по соображениям экологической безопасности.

Наиболее близким из аналогов является состав для регулирования разработки нефтяных месторождений, содержащий полисахарид и соединение поливалентного металла [5].

Цель изобретения - улучшение реологических свойств состава при одновременной его доступности, экологичности и применимости на нефтепромыслах.

Указанная цель достигается тем, что в состав для регулирования разработки нефтяных месторождений, включающем полисахарид, соединение поливалентного металла и воду, в качестве полисахарида используется экзополисахарид, содержащий уроновые кислоты в количестве 1-30% и продуцируемый Azotobac- ter vinelandii (Lipman) ФЧ-1, ВКПМ В-5933 в виде культуральной жидкости, а в качестве соединения поливалентного металла хромкалиевые квасцы при следующем соотношении компонентов, мас.%: указанный экзополисахарид 0,001-1,0; хромокалиевые квасцы 0,002-0,04; вода остальное.

Использование хромокалиевых квасцов в предложенном составе в сочетании с уроновыми кислотами позволяет получить очень прочную объемную структуру, причем варьирование концентраций компонентов, входящих в предлагаемый состав, позволяет регулировать время образования прочной объемной структуры в широком диапазоне изменений геолого-физических условий пласта, обеспечивая возможность закачки предлагаемого состава и в низкопроницаемые коллектора с большой глубиной залегания.

Штамм Azotobacter vinelandii Lipman ФЧ-1 ВКПМ В-5933 является продуцентом экзополисахарида, производящим его в количестве не менее 15 г/л, и обладает высокими гелеобразующими свойствами, которые к сожалению не удается сохранить при повышенных температурах и больших напряжениях сдвига.

Устранить этот недостаток позволило использование хромокалиевых квасцов, за счет которых произошла сшивка полимерных молекул и молекул уроновых кислот с молекулами квасцов с образованием в растворе очень прочной и разветвленной сетки.

Пример. Предварительно осуществляют известным способом (Adv. Biotechnol, Proc. Int. Ferment Symp. 1981, 3, p.433-439) биосинтез экзополисахарида таким образом, чтобы содержание уроновых кислот находилось в интервале 1-30%. Требуемое количество уроновых кислот получали за счет изменения соотношений компонентов питательной среды. Содержание уроновых кислот определяли методом жидкостной хромотографии. Бактерия Azotobacter vinelandii (Lipman) при росте на богатой органической среде (жидком сусле) в условиях аэрации при 28-30oС в течение 48 ч продуцирует 25 г экзополисахарида, превращая культуральную жидкость в гель.

Культивирование штамма осуществляли на жидкой минеральной среде следующего состава, мас. %: К2НРО4 0,5-2; MgSO4состав для регулирования разработки нефтяных месторождений, патент № 21078117H2O 0,5-2; FeOсостав для регулирования разработки нефтяных месторождений, патент № 21078117H2O 0,0003-0,0006; Na2MoO4состав для регулирования разработки нефтяных месторождений, патент № 21078112H2O 0,0003-0,0006; вода остальное.

В качестве источника углеродного питания использовали глюкозу в концентрации 1,5%.

Приготовление состава в лабораторных условиях осуществляли следующим образом. В стеклянный стакан с мешалкой наливали культуральную жидкость экзополисахарида, содержащего требуемое количество уроновых кислот и воду. После тщательного перемешивания в стакан добавляли определенное количество хромокалиевых квасцов. Снова перемешивали до получения однородной массы. Приготовленный таким образом состав разделяли на две части: первую термостатировали при 20oС, а вторую при 60oС. После окончания гелеобразования определяли предельное напряжение сдвига на приборе Rheogel - 90М.

Примеры предлагаемых составов и результаты испытаний приведены в таблице.

В промысловых условиях наиболее наглядным доказательством успешности работы изоляционного состава может явиться либо изменение обводненности добываемой продукции при обработке добывающей скважины, либо изменение профиля приемистости при обработке нагнетательной скважины при закачке составов с последующим снижением обводненности жидкости в добывающих скважинах.

Приготовление раствора предлагаемого состава на промысле осуществляли в емкостях цементировочного агрегата (ЦА), подсоединенного к нагнетательной скважине и снабженного насосами для перемешивания. После получения однородной массы насосом ЦА доводят полученный раствор через колонну насосно-компрессорных труб до забоя скважины и продавливают его в пласт. В качестве продавочной жидкости использовали пресную воду.

Проведенные опытные закачки на Ромашкинском месторождении (Татарстан) и на ряде месторождений Западной Сибири, показали, что применение предложенных составов обеспечивает при обработке добывающих скважин - дополнительную добычу нефти в количестве 200 т/на 1 т закаченного состава, при обработке нагнетательных скважин - перераспределение в профиле приемистости и снижении обводненности в добывающих скважинах на 10-50%.

При проведении сравнительных испытаний при использовании раствора экзополисахарида, синтезируемого Acinetobacter sp. с добавлением хромокалиевых квасцов, не удалось добиться поставленной цели.

При использовании составов с содержанием квасцов и уроновых кислот ниже заявляемого количества не позволяет получить гелеобразную систему с необходимыми реологическими свойствами, а при использовании их выше заявляемых количеств нецелесообразно, так как практически не наблюдается изменения свойств состава.

Класс E21B43/22 с применением химикалий или бактерий

способ повышения нефтеотдачи в неоднородных, высокообводненных, пористых и трещиновато-пористых, низко- и высокотемпературных продуктивных пластах -  патент 2528805 (20.09.2014)
водные пенообразующие композиции с совместимостью с углеводородами -  патент 2528801 (20.09.2014)
способ снижения вязкости углеводородов -  патент 2528344 (10.09.2014)
применение алк (ен) ил олигогликозидов в процессах с повышенным извлечением нефти -  патент 2528326 (10.09.2014)
усовершенствование способа добычи нефти с использованием полимера без дополнительного оборудования или продукта -  патент 2528186 (10.09.2014)
способ разработки нефтяной залежи -  патент 2528183 (10.09.2014)
способ освоения нефтяных и газовых скважин -  патент 2527419 (27.08.2014)
жидкости для технического обслуживания ствола скважины, содержащие катионные полимеры, и способы их применения -  патент 2527102 (27.08.2014)
состав для регулирования разработки неоднородного нефтяного пласта -  патент 2526943 (27.08.2014)
способ повышения добычи нефтей, газоконденсатов и газов из месторождений и обеспечения бесперебойной работы добывающих и нагнетательных скважин -  патент 2525413 (10.08.2014)
Наверх