струйный гидроманипулятор

Классы МПК:E21B49/00 Исследование структуры стенок скважины, исследование геологического строения пластов; способы или устройства для получения проб грунта или скважинной жидкости, специально предназначенные для бурения пород
E21B43/25 способы возбуждения скважин
Автор(ы):, , , ,
Патентообладатель(и):Закрытое акционерное общество "Сибнефтехнология"
Приоритеты:
подача заявки:
1996-01-31
публикация патента:

Использование: изобретение относится к нефтегазодобывающей промышленности и может быть использовано для освоения скважин и интенсификации нефтегазовых притоков и направлено на повышение эффективности работы гидроманипулятора и расширение его функциональных возможностей. Сущность изобретения: струйный гидроманипулятор включает полый корпус 2, установленные в полости корпуса, струйный насос 3, обратный клапан 4, пакер 26, фиксатор 21, стержень 10 с приводом, тарированный клапан 17. При этом привод выполнен в виде камеры 12 с поршнем 11 и впускными и выпускными клапанами. 7 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7

Формула изобретения

Струйный гидроманипулятор, включающий полый корпус с радиальными каналами, связанный с колонной труб, установленный в полости корпуса струйный насос вставного исполнения с блоком регистрирующих приборов, обратный клапан, пакер и фиксатор, отличающийся тем, что он снабжен стержнем с приводом и тарированным клапаном, при этом стержень расположен в полости струйного насоса с возможностью перекрытия сопла, а привод выполнен в виде камеры с размещенным в ней подпружиненным поршнем и снабженной верхним и нижним впускными клапанами и выпускным клапаном, причем верхний впускной клапан расположен над поршнем привода и связан с заколонным пространством посредством канала, выполненного в корпусе гидроманипулятора, нижний впускной клапан расположен под поршнем и связан каналом с камерой обратного клапана, выпускной клапан расположен между поршнем и нижним впускным клапаном и гидравлически сообщен с кольцевой полостью сопла насоса, а тарированный клапан расположен под обратным клапаном в канале, связывающем полость корпуса с подпакерным пространством.

Описание изобретения к патенту

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для освоения скважин и интенсификации нефтегазовых притоков.

Известен струйный аппарат, содержащий нагнетательный патрубок, сопло, и конический стержень, связанный с приводом, выполненным в виде уравнительного и силового мембранных механизмов [1].

Недостатком этого аппарата является ограниченность применения его в скважине, ввиду громоздкости исполнения мембранного механизма привода и сложности управления режимами работы.

Наиболее близким техническим решением, взятым за прототип, является устройство для вызова притока пластового флюида, содержащее полый корпус с каналами и связанный с колонной труб, установленный в корпусе струйный насос, блок регистрирующих приборов, обратный клапан, пакер, фиксатор [2].

Недостатком этого устройства, является ограниченность функциональных возможностей, вызванная необходимостью подъема насоса при проведении обработки продуктивного пласта реагентами и замене насоса на инвентарный клапан при опрессовке пакера, а также низкая эффективность работы насоса при изменении давления рабочей или пластовой жидкости.

Задачей изобретения является расширение функциональных возможностей и повышение эффективности работы гидроманипулятора.

Решение поставленной задачи достигается тем, что струйный гидроманипулятор, включающий полый корпус с радиальными каналами, связанный с колонной труб, установленный в полости корпуса струйный насос вставного исполнения с блоком регистрирующих приборов, обратный клапан, пакер и фиксатор, снабжен стержнем с приводом и тарированным клапаном, при этом стержень расположен в полости струйного насоса с возможностью перекрытия сопла, а привод выполнен в виде камеры, с размещенным в ней подпружиненным поршнем, и снабженной верхним и нижним впускными клапанами и выпускным клапаном, причем верхний впускной клапан расположен над поршнем привода и связан с заколонным пространством посредством канала, выполненного в корпусе гидроманипулятора, нижний впускной клапан расположен над поршнем и связан каналом с камерой обратного клапана, выпускной клапан расположен между поршнем и нижним впускным клапаном и гидравлически сообщен с кольцевой полостью сопла насоса, а тарированный клапан расположен под обратным клапаном в канале, связывающем полость корпуса с подпакерным пространством.

Сущность заявляемого струйного гидроманипулятора заключается в том, что верхний клапан камеры привода стержня выполнен например, в виде золотникового устройства с гидроаккумуляторным приводом, который обрабатывает при уменьшении давления, в данном случае после проведения опрессовки пакера, без подъема насоса, в результате камера привода гидравлически связывается с заколонным пространством, нижний впускной и выпускной клапаны камеры привода стержня расположены ниже подпружиненного поршня, данная компоновка образует поршневой насос для подкачивания пластового флюида в кольцевую полость сопла струйного насоса во время его работы, тарированный клапан расположен под обратным клапаном и предназначен для закачки реагентов для обработки призабойной зоны пласта без подъема струйного насоса.

На фиг. 1 и 2 изображены струйный гидроманипулятор, общий вид, разрез, на фиг 3 - разрез А-А на фиг. 1, на фиг. 4 - разрез Б-Б на фиг. 1, на фиг. 5, 6 и 7 даны принципиальные схемы работы гидроманипулятора.

Струйный гидроманипулятор (фиг. 1 и 2) устанавливается на насосно-компрессорные трубы (НКТ) 1 и содержит корпус 2, струйный насос 3 и обратный клапан 4.

Корпус 2 имеет полую конструкцию, в теле которой расположены каналы В, Г, Д, Е, Ж, З, К, Л и кольцевая полость М.

Струйный насос 3 включает гильзу 5 с блоком 6 регистрирующих приборов, к которой через разъем крепится кабельный наконечник 7 с грузонесущим каротажным кабелем 8, окно Н, сопло 9, стержень 10, поршень 11, размещенный в камере 12, пружину 13, впускные клапаны 14 и 15, выпускной клапан 16, тарированный клапан 17, камеру 18 смещения, диффузор 19.

Для посадки струйного насоса 3 в корпусе 2 имеется посадочное гнездо 0, а герметичность обеспечивают уплотнители 20.

Струйный насос 3 удерживается в корпусе 2 за счет фиксаторов 21, которые входят в зацепление с выточкой П, а снятие с упоров производится при помощи тяг 22. Обратный клапан 4 включает шток 23, втулку 24 для присоединения измерительных приборов (манометра, термометра, расходомера и др.) при этом на корпусе обратного клапана 4 имеются отверстия Р, а у втулки канал С, который служит для выравнивания давления в подпакерной и надпакерной зонах при подъеме струйного насоса 3 из скважины.

На фиг. 5 показано эксплуатационная колонна 25, пакер 26, золотниковый клапан 27, верхняя 28 и нижняя 29 полости клапана 14, возвратная пружина 30.

Работа струйного гидроманипулятора.

Корпус 2 вместе со струйным насосом 3 спускают в эксплуатационную колонну 25 (фиг. 5), на НКТ 1 совместно с пакером 26 и устанавливают на расчетной глубине. После разобщения затрубного пространства пакером 26 поверяют герметичность пакера 26 и колонны НКТ 1 опрессовочным давлением в 1,5 раза, превышающим расчетное рабочее давление, при этом клапан 14 и сопло 9 заперты.

После проведения опрессовки пакера 26 и НКТ 1 давление в затрубном пространстве снижается до расчетного рабочего (фиг. 6) при этом золотниковый клапан 27, привода клапана 24, закрывается в результате разницы давления в верхней 28 и нижней 29 полостях клапан 14 открывается, рабочая жидкость поступает через канал Ж в камеру 12 при этом поршень 11, двигаясь вниз, перемещает стержень 10, открывая сопло 9 для прохода рабочей жидкости, поступающей по радиальным каналам В, через камеру 18 смешения, диффузор 19, окно Н, каналы Д во внутреннюю полость НКТ 1. Вытекая с большой скоростью из сопла 9, жидкость эжектирует из подпакерной зоны пластовый флюид, который через каналы Г и кольцевую полость М корпуса 2 поступает в камеру 18 смешения, где происходит смешивание рабочей и эжектируемой жидкости, но при этом часто из эжектируемой жидкости выделяется газ, который поступая в кольцевую полость М снижает эффективность работы струйного насоса 3 из-за гидравлического разрыва столба пластового флюида.

Для вытеснения и предотвращения газовыделения в кольцевую полость М по каналу "3" из камеры 12 поступает пластовый флюид.

Рабочая жидкость подается в скважину в пульсирующем режиме, благодаря этому поршень 11 совершает возвратно-поступательное движение в камере 12, при этом пластовый флюид из камеры обратного клапана 4 через клапан 15 поступает по каналу К в камеру 12, откуда выходит через клапан 16 и поступает по каналу "3" в кольцевую полость М, с целью дополнительной подпитки данной полости пластовым флюидом для исключения разрыва рабочей и эжектирумой жидкостей, а также с целью повышения эффективности работы струйного гидроманипулятора.

При работе струйного насоса 3 обратный клапан 4 находится в верхнем положении, жидкость через зазор, образовавшейся между клапаном к и корпусом 2, поступает в кольцевую полость М. При прекращении работы насосных агрегатов клапан 4, под действием возвратной пружины 30 возвращается в исходное положение, герметизируя подпакерную зону (фиг. 7). Давление в подпакерной зоне восстанавливается за счет притока из продуктивного пласта. Это изменение давления по канале Е в теле корпуса 2 передается на преобразователь давления блока 6 регистрирующих приборов, при этом сигнал по кабелю 8 (фиг. 1) передается на фоторегистратор каротажной станции (на чертеже не показаны).

Для интенсификации нефтегазовых притоков необходимо производить обработку призабойной зоны пласта химическими реагентами (фиг. 7), для этого подачу рабочей жидкости прекращают, при этом стержень 10 под действием пружины 13 запирает сопло 9 насоса 3. Закачиваемый в скважину химреагент подает через НКТ 1 при продавочном давлении, превышающем пластовое давление на 1,0 - 1,5 МПа. Тарированный клапан 17 срабатывает при давлении, равном продавочному.

По окончанию работ в скважине, дают натяжку каротажного кабеля, при этом тросовые тяги 22 снимают фиксаторы 21 с упора. Струйный насос 3 начинает подниматься и при этом шток 23 обратного клапана 4 также поднимается и соединяет каналы С с отверстиями Р, надпакерная и подпакерная зоны сообщаются, происходит выравнивание в них давления и струйный насос 3 поднимается на поверхность.

Использование предлагаемого струйного гидроманипулятора в сравнении с прототипом позволяет сократить сроки освоения скважин и интенсификации нефтегазовых притоков путем исключения спуско-подъемных операций:

- при опрессовке пакера 26 и НКТ 1,

- при обработке призабойной зоны пласта химреагентами, а также повысить эффективностью работы струйного насоса 3 за счет подкачки пластового флюида в кольцевую полость М.

Струйный гидроманипулятор испытан на Ермаковском месторождении в эксплуатационной скважине N 175 куст 186 при освоении и интенсификации нефтегазовых притоков продуктивного пласта A22 , залегающего в интервале 1902-1910 м. При освоении скважины общее время цикла работ, включающее спуск и опрессовку оборудования, очистку призабойной зоны от флюидов, включая глинокислотную обработку пласта, составило 8 суток.

На скважине при освоении и очистке с применением струйных аппаратов, аналогичных прототипу, полный цикл работ до запуска скважины в эксплуатацию составляет 10 суток.

Положительный эффект от использования заявляемого струйного гидроманипулятора достигается за счет сокращения сроков освоения скважины, повышения эффективности и расширения функциональных возможностей.

Класс E21B49/00 Исследование структуры стенок скважины, исследование геологического строения пластов; способы или устройства для получения проб грунта или скважинной жидкости, специально предназначенные для бурения пород

способ гидродинамических исследований газонасыщенных пластов без выпуска газа на поверхность -  патент 2527089 (27.08.2014)
способ определения совместимости жидких производственных отходов с пластовой водой -  патент 2525560 (20.08.2014)
способ прогнозирования изменения свойств призабойной зоны пласта под воздействием бурового раствора -  патент 2525093 (10.08.2014)
способ определения застойных и слабодренируемых нефтяных зон в низкопроницаемых коллекторах -  патент 2524719 (10.08.2014)
способ и устройство для увеличения добычи в месторождении -  патент 2524367 (27.07.2014)
скважинные системы датчиков и соответствующие способы -  патент 2524100 (27.07.2014)
способ комплексной оценки состояния призабойной зоны пласта -  патент 2522579 (20.07.2014)
способ контроля за разработкой нефтяного месторождения -  патент 2522494 (20.07.2014)
способ определения обводненности продукции нефтедобывающей скважины -  патент 2520251 (20.06.2014)
способ определения нефтенасыщенных пластов -  патент 2517730 (27.05.2014)

Класс E21B43/25 способы возбуждения скважин

способ электромагнитного воздействия на скважинное пространство при добыче углеводородного сырья -  патент 2529689 (27.09.2014)
устройство для избирательной имплозионной обработки продуктивного пласта -  патент 2529063 (27.09.2014)
способ обработки призабойной зоны горизонтальной скважины -  патент 2527434 (27.08.2014)
система наземного оборудования на буровой скважине -  патент 2527100 (27.08.2014)
способ обработки призабойной зоны добывающей скважины -  патент 2527085 (27.08.2014)
способ интенсификации добычи природного газа из угольных пластов через скважины -  патент 2524583 (27.07.2014)
способ обработки призабойной зоны скважины -  патент 2522327 (10.07.2014)
устройство для гидроимпульсного воздействия на призабойную зону пласта -  патент 2522195 (10.07.2014)
способ повышения нефтеотдачи пласта -  патент 2521169 (27.06.2014)
скважинный акустический прибор -  патент 2521094 (27.06.2014)
Наверх