способ нанесения покрытий в вакууме

Классы МПК:C23C14/00 Покрытие вакуумным испарением, распылением металлов или ионным внедрением материала, образующего покрытие
Автор(ы):, ,
Патентообладатель(и):Акционерное общество открытого типа "АВИ.С"
Приоритеты:
подача заявки:
1991-02-25
публикация патента:

Использование: в области машиностроения в производствах, требующих высокой адгезионной стойкости покрытий на изделиях. Сущность изобретения: при осаждении сформированного потока частиц напыляемого материала, катоду-мишени и подложке сообщают колебания с одинаковой и противоположной по знаку частотой, с сообщением дискретного изменения давления, вводимым в камеру инертным газам с частотой кратной частоте колебаний подложки, причем последней дополнительно сообщают раздельные колебания во взаимно перпендикулярных направлениях. 4 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4

Формула изобретения

Способ нанесения покрытий в вакууме, включающий подачу в камеру инертного газа, воздействие УЗ-колебаний на катод-мишень и осаждение сформированного потока частиц напыляемого материала на подложку, отличающийся тем, что, с целью повышения прочности покрытий, подложке сообщают УЗ-колебания с частотой, противоположной по знаку и равной частоте колебаний катода-мишени, при этом давление инертного газа изменяют дискретно с частотой, кратной частоте колебания подложки, а колебания подложки осуществляют во взаимно перпендикулярных направлениях.

Описание изобретения к патенту

Предлагаемое изобретение относится к области машиностроения и может быть использовано в производствах, требующих высокой адгезионной стойкости покрытий на изделиях.

Известен способ напыления изделий, который состоит в том, что наносят покрытие по диодной схеме катодного распыления, при котором положительные ионы образуются в тлеющем разряде постоянного напряжения, где распыляемая мишень является катодом. Вторичные электроны, вылетающие из мишени, ускоряются в катодном темном пространстве и сталкиваясь с молекулами газа, образуют положительные ионы, которые бомбардируют мишень-катод. Распыленные ими атомы катода обладают большей энергией, чем атомы пара, полученного путем термического испарения, что влияет на структуру осадка и его адгезию к подложке.

Недостатком аналога является невозможность формирования потока частиц для "укладки" напыляемого материала по заданной структуре расположения. (И. Л. Ройх и др. Нанесение защитных покрытий в вакууме. М. 1978, с. 5-18.)

Известен способ напыления, заключающийся в осаждении сформированного потока частиц напыляемого материала. Задача решается за счет ориентации изделий и дискретного поворота изделий, что позволяет наносить покрытие послойно в различных направлениях (см. полож. решение по заявке N 4739469/21 (092777) прототип).

Недостатком является невозможность воздействия на осаждаемые частицы механическим путем, отсутствие возможного разделения колебаний детали (с дискретными частотами), определяющими движение детали во взаимно перпендикулярных направлениях, резонирование частиц колебательной системы при осаждении потока, позволяющего ускорить вход напыляемых частиц в поверхность подложки.

Цель предлагаемого изобретения повышение прочности покрытия изделий.

Это достигается тем, что по способу напыления изделий, заключающийся в осаждении сформированного потока частиц напыляемого материала, катоду-мишени и подложке (изделию) сообщают колебания с одинаковой и противоположной по знаку частотой, с сообщением дискретного изменения давления, вводимым в камеру инертным газом с частотой кратной частоте колебаний подложки, причем последней дополнительно сообщают раздельные колебания во взаимно перпендикулярных направлениях.

Сопоставительный анализ с прототипом показывает, что заявляемый способ отличается тем, что дополнительно воздействуют на осаждаемые частицы и напыляемое изделие.

Таким образом, заявляемое изделие соответствует критерию "новизна".

Сравнение заявляемого решения с другими техническими решениями показывает, что в предлагаемом способе механически воздействуют на напыляемые частицы и подложку, путем деления и резонирования частотными колебаниями потоков напыляемых частиц относительно подвижной (колеблющейся) поверхности подложки, с одновременным изменением давления, впускаемого в вакуумную камеру инертного газа. Это позволяет сделать вывод о соответствии технического решения критерию "существенные отличия". Осуществление заявляемого способа поясняется с помощью устройства.

На фиг. 1 изображена камера с условным прохождением напыляемых частиц; на фиг. 2 подложка с положением напыляемой частицы в координатах частотного перемещения; на фиг. 3 поверхность подложки с расположением на ее поверхности рисунком расположения положительных ионов; на фиг. 4 схема воздействия движения подач на ионы относительно поверхности подложки.

В камере 1 устанавливается мишень-катод 2 с водяным охлаждением 3. Испаритель 4 лучом 5 воздействует на поверхность мишени-катода 2, образуя кипящий слой 6. Испаряемые электроны 7 металла, соединяясь с инертными газами, образуют положительные ионы 8 (9) окислов (нитридов), осаждающихся на поверхности подложки 10. Ультразвуковые колебания 11-14 воздействуют на укладку покрытия следующим образом. Молекулы газа 15 под воздействием изменяющегося давления "P", идущего с частотой "f", более интенсивно резонируют с электронами 7, испаряемыми с поверхности мишени-катода 2. Образующиеся положительные ионы 8 попадают на поверхность подложки, подвергаясь разнополюсным воздействиям частоты.

Предполагаемый интервал падения резонируемых по результирующему движению ионов равен двум амплитудам, поэтому следует ожидать в массиве осаждения ионов чередование следов, образующих эффективную укладку (эффективное нанесение) частиц во взаимно перпендикулярных направлениях. Положительные ионы ударяются о поверхность подложки и растекаются в виде макроследов. Встречные резонируемые движения подложки ускоряют проникновение ионов в подповерхностный слой, чем достигается адгезионная способность покрытия.

Пример. Лопатка турбины 1 ступени, выполненная из материала ЭП741, помещается в вакуумную камеру УЭЛ-175. К известным операциям по напылению дополняют: изменение давления инертного газа, раздельные вибрации подложки во взаимно перпендикулярных направлениях, частотные колебания катода-мишени.

Лопатка турбины 1 ступени проходит напыление в 2 этапа: 1 слой 50-70 мкм, второй слой 25-30 мкм.

В нашем случае ускорение процесса достигается получением "Ve" - результирующего движения скорости полета частицы по составляющим: а - ускорение свободного падения и колебательных перемещений подложки создает окончательную циклограмму движений.

Введение ультразвуковых колебаний максимально сокращает время между операциями подготовки поверхностей и нанесения покрытий.

Использование ультразвуковых колебаний изделия в процессе напыления в определенной степени способствует увеличению площади напыления, значительному уплотнению покрытий за счет скольжения детали, относительно осаждаемых положительных ионов. Введение дополнительных ультразвуковых колебаний вызывает рост поверхностной температуры в контакте под напыляемыми частицами, что также приводит к увеличению прочности сцепления покрытия с деталью.

Предложенное техническое решение по сравнению с базовым объектом (прототип) за счет повышения адгезионной способности покрытия, значительно увеличивает ресурс работы, например авиационных двигателей, что дает повышение экономического эффекта на 35-40%

Класс C23C14/00 Покрытие вакуумным испарением, распылением металлов или ионным внедрением материала, образующего покрытие

способ ионной имплантации поверхностей деталей из конструкционной стали -  патент 2529337 (27.09.2014)
покрывная система, деталь с покрытием и способ ее получения -  патент 2528930 (20.09.2014)
способ изготовления слоев оксида металла заранее заданной структуры посредством испарения электрической дугой -  патент 2528602 (20.09.2014)
магнитный блок распылительной системы -  патент 2528536 (20.09.2014)
износостойкое защитное покрытие и способ его получения -  патент 2528298 (10.09.2014)
режущая пластина -  патент 2528288 (10.09.2014)
двухслойное износостойкое покрытие режущего инструмента -  патент 2527829 (10.09.2014)
сплав на основе никеля для нанесения износо- и коррозионностойких покрытий микроплазменным или холодным сверхзвуковым напылением -  патент 2527543 (10.09.2014)
способ нанесения аморфного алмазоподобного покрытия на лезвия хирургических скальпелей -  патент 2527113 (27.08.2014)
способ импульсно-периодической ионной очистки поверхности изделий из диэлектрического материала или проводящего материала с диэлектрическими включениями -  патент 2526654 (27.08.2014)
Наверх