способ получения сферического оксида алюминия

Классы МПК:C01F7/02 оксид алюминия; гидроксид алюминия; алюминаты 
Автор(ы):, , , , , , ,
Патентообладатель(и):Всероссийский научно-исследовательский институт природных газов и газовых технологий,
Институт катализа им. Г.К.Борескова РАН
Приоритеты:
подача заявки:
1996-02-26
публикация патента:

Использование: в способах получения сферического оксида алюминия. Сущность: кислородсодержащие соединения состава Al2O3способ получения сферического оксида алюминия, патент № 2102321nH2O, где 0,25<n<2,0, подвергают механохимической активации. Полученный полупродукт подают в непрерывном режиме на гранулятор. Образующиеся гранулы поступают на транспортер. Ленточный транспортер проходит через камеру, где поддерживается заданное парциальное давление паров воды в диапазоне 25 - 100oC в течение 1 - 5 ч. Полученные гранулы высушивают в сушилке и затем прокаливают в потоке воздуха. Прокаливание осуществляют при объемной скорости от 500 до 3000 обратных часов и температуре 330 - 900oC в течение 1 - 6 ч. Механохимическую активацию проводят путем ударного воздействия в дезинтеграторе при скорости соударения частиц между собой и с ротором дезинтегратора 80 - 200 м/с. 3 з. п. ф-лы, 2 табл.
Рисунок 1, Рисунок 2

Формула изобретения

1. Способ получения сферического оксида алюминия, включающий грануляцию кислородсодержащих соединений состава Al2O3 способ получения сферического оксида алюминия, патент № 2102321 nH2O с водой с получением свежесформованных гранул, их сушку и прокаливание, отличающийся тем, что перед грануляцией проводят механохимическую активацию кислородсодержащих соединений Al2O3 способ получения сферического оксида алюминия, патент № 2102321 nH2O, где 0,25 < n < 2,0, а свежесформованные гранулы выдерживают в насыщенных парах воды.

2. Способ по п.1, отличающийся тем, что механохимическую активацию проводят путем ударного воздействия в дезинтеграторе при скорости соударения частиц между собой и с ротором дезинтегратора 80 200 м/с.

3. Способ по пп.1 и 2, отличающийся тем, что свежесформованные гранулы выдерживают в насыщенных парах воды в течение 1 5 ч при 25 100oС.

4. Способ по пп.1 3, отличающийся тем, что после сушки сферические гранулы прокаливают в потоке воздуха или дымовых газов при объемной скорости 500 3000 ч-1, 330 900oС в течение 1 6 ч.

Описание изобретения к патенту

Предлагаемое изобретение относится к способам получения сферического оксида алюминия, который находит самое широкое применение в химической и нефтеперерабатывающей промышленности в качестве адсорбента, осушителя, носителя и катализатора для различных процессов, в том числе процессов Клауса и Сульфрен.

Известны способы получения оксида алюминия, основанные на методах переосаждения из азотнокислых солей основаниями [1]

Однако такие способы характеризуются большими расходами химических реагентов (кислот и щелочей), большими количествами сточных вод и вредными газовыми выбросами.

В последние десятилетия возрастает роль технологий производства оксида алюминия, характеризующихся отсутствием стоков и вредных выбросов в атмосферу [2 5] Все известные технологии основаны на методе быстрой дегидратации технического гидроксида глинозема Al(OH)3, или методе термохимической активации [6] Полученный полупродукт переводят в псевдобемит, байерит или подвергают агломерации, в последнем случае получают сферический оксид алюминия.

Известен способ получения сферического оксида алюминия, используемого в качестве осушителя, согласно которому технический гидрат подвергают быстрому нагреву, приводящему к частичной дегидратации исходного соединения [7] Полученный полупродукт без размола прессуют на прессе и дробят на гранулы размером способ получения сферического оксида алюминия, патент № 2102321 4 мм. К гранулам добавляют воду и окатывают в течение 5 мин, выдерживают при 50 100oC в течение не менее 5 ч и далее прокаливают при 300 450oC в потоке горячего газа в течение 5 ч. Адсорбционная емкость полученного осушителя, измеренная по парам воды в статических условиях, составляет 5,7% при относительной влажности 10%

К недостаткам этого способа следует отнести неправильную форму получаемых гранул, многостадийность процесса, полученный таким способом катализатор нельзя использовать в процессах Клауса или Сульфрен.

Наиболее близким по существу и достигаемому эффекту является способ получения сферического оксида алюминия, согласно которому технический гидрат глинозема подвергают частичной дегидратации и получают соединение Al2O3способ получения сферического оксида алюминия, патент № 21023210,49 H2O, которое затем размалывают и гранулируют на дисковом грануляторе [8] Полученные гранулы прокаливают при 150 850oC и далее обрабатывают в гидротермальных условиях при давлении насыщенных паров воды в интервале температур 120 200oC, сушат и прокаливают. С целью увеличения прочности гранул обработку в гидротермальных условиях ведут в присутствии NaOH, KOH, NaAlO2, Ba(OH)2 и карбонатов этих металлов.

Недостатком технического решения является многостадийность процесса и проведение отдельных его стадий в сложных технологических условиях.

Предлагаемое изобретение решает задачу упрощения технологии производства сферического оксида алюминия при сохранении качества продукта.

Поставленная задача решается следующим образом. Кислородсодержащие соединения алюминия состава Al2O3способ получения сферического оксида алюминия, патент № 2102321nH2O, где 0,25<n<2,0, полученные различными способами, например, частичной дегидратацией [5, 9] или термохимической активацией [10, 12] или терморазложением гиббсита в псевдоожиженном слое катализатора полного окисления [13] или электронно-лучевой активацией тригидроксида алюминия [11] подвергают механохимической активации. Механохимическую активацию проводят в дезинтеграторе при скорости соударения частиц с ротором дезинтегратора 80 - 200 м/с, при этом происходит уменьшение размера частиц и запасение энергии, причем величина запасенной энергии достигает способ получения сферического оксида алюминия, патент № 2102321 35 кДж/моль Al2O3.

Полученный полупродукт подают на тарельчатый гранулятор одновременно с водой и гранулируют в сферические гранулы размером 2 8 мм. Сферические гранулы выдерживают в насыщенных парах воды при температуре 25 100oC в течение 1 5 ч. Далее гранулы высушивают и прокаливают в потоке воздуха или дымовых газов при объемной скорости 500 3000 обратных часов при температуре 330 900oC в течение 1 6 ч.

Таким образом, отличительными признаками нового способа получения сферического оксида алюминия является проведение стадий механохимической активации соединений алюминия состава Al2O3способ получения сферического оксида алюминия, патент № 2102321nH2O, где 0,25<n<2,0, и выдержки свежесформованных гранул в насыщенных парах воды. В результате использования указанных стадий упрощается технология получения сферического оксида алюминия за счет того, что из технологического процесса исключаются стадии гидротермальной обработки, отмывки и предварительной термообработки. Если опустить стадию механохимической активации, то для получения твердых гранул необходимо выдерживать их в воде или в растворе щелочи. Если опустить стадию выдержки свежесформированных гранул в насыщенных парах воды, то конечный продукт после термообработки имеет прочность не менее 4 кг/см2.

Сущность предлагаемого изобретения иллюстрируется следующими примерами.

Пример 1.

Соединение состава Al2O3способ получения сферического оксида алюминия, патент № 21023210,9 H2O с удельной поверхностью Sуд 180 м2/г подвергают механохимической активации при линейной скорости соударения частиц вещества с ротором 80 м/с. Полученный полупродукт, размер частиц которого составляет преимущественно способ получения сферического оксида алюминия, патент № 2102321 30 мкм, подают в непрерывном режиме на тарельчатый гранулятор одновременно с водой, распыляемой через форсунку.

Образующиеся гранулы в произвольном режиме перекатываются через борт гранулятора и поступают на ленточный транспортер. Ленточный транспортер проходит через камеру, где поддерживается заданное парциальное давление паров воды при температуре 80oC. Скорость транспортера задана таким образом, что время пребывания катализатора в камере составляет 3 ч. Полученные гранулы высушивают в сушилке при температуре 120oC и затем прокаливают во вращающейся печи в потоке горячих дымовых газов при температуре потока на входе 490oC, на выходе 330oC. Среднее время пребывания гранул в печи 1 ч. Объемная скорость дымовых газов составляет 1500 обратных часов.

Условия получения сферического оксида алюминия и характеристики полученного продукта представлены в табл. 1 и 2 соответственно.

Пример 2.

Соединение состава Al2O3способ получения сферического оксида алюминия, патент № 21023210,8H2O (Sудспособ получения сферического оксида алюминия, патент № 2102321110 м2/г) обрабатывают на дезинтеграторной установке при линейной скорости соударения частиц вещества с ротором 180 м/с. Полученный полупродукт, размер частиц которого составляет 7 8 мкм, подают в непрерывном режиме на тарельчатый гранулятор одновременно с водой, распыляемой через форсунку.

Свежесформованные гранулы выдерживают в насыщенных парах воды при температуре 80oC в течение 3 ч. Полученные гранулы высушивают и прокаливают по методике, описанной в примере 1.

Пример 3.

Соединение алюминия состава Al2O3способ получения сферического оксида алюминия, патент № 21023210,38H2O (Sудспособ получения сферического оксида алюминия, патент № 2102321354 м2/г) подвергают механохимической активации при линейной скорости соударения частиц вещества с ротором способ получения сферического оксида алюминия, патент № 2102321200 м/с.

Активированный полупродукт подают на тарельчатый гранулятор одновременно с водой, где он формируется в сферические гранулы диаметром 6 8 мм. Свежесформованные гранулы обрабатывают в насыщенных парах воды при температуре 100oC в течение двух часов. Гранулы высушивают по методике, описанной в примере 1, и подвергают термообработке в потоке сухого воздуха при температуре 350oC в течение двух часов при объемной скорости воздуха 500 обратных часов.

Пример 4.

Соединение состава Al2O3способ получения сферического оксида алюминия, патент № 21023210,25 H2O с Sуд=382 м2/г подвергают механохимической активации на дезинтеграторе при линейной скорости соударения частиц вещества с ротором дезинтегратора способ получения сферического оксида алюминия, патент № 2102321 200 м/с.

Полученный полупродукт подают в непрерывном режиме на тарельчатый гранулятор одновременно с водой, распыляемой через форсунку. Свежесформованные гранулы выдерживают в насыщенных парах воды при температуре 100oC в течение одного часа. Полученные гранулы выдерживают на транспортере 2 ч, сушат и прокаливают во вращающейся печи в потоке горячих дымовых газов, полученных при сжигании метана (природного газа) при температуре на входе в печь - 550oC и на выходе из печи 350oC, при среднем времени пребывания гранул в печи 1 ч. Объемная скорость дымовых газов составляет 3000 обратных часов.

Пример 5.

Соединение состава Al2O3способ получения сферического оксида алюминия, патент № 21023212,0 H2O (Sудспособ получения сферического оксида алюминия, патент № 210232158 м2/г) подвергают механохимической активации при линейной скорости соударения частиц вещества с ротором способ получения сферического оксида алюминия, патент № 2102321 120 м/с.

Полученный полупродукт подают в непрерывном режиме на тарельчатый гранулятор одновременно с водой, распыляемой через форсунку. Свежесформованные гранулы выдерживают в насыщенных парах воды при температуре 25oC в течение одного часа. Полученные гранулы сушат и прокаливают в потоке сухого воздуха при 500oC в течение трех часов.

Пример 6.

Соединение состава Al2O3способ получения сферического оксида алюминия, патент № 21023210,5 H2O подвергают механохимической активации в дезинтеграторной установке при линейной скорости соударения частиц с ротором способ получения сферического оксида алюминия, патент № 2102321 120 м/с.

Полученный полупродукт подают в непрерывном режиме на тарельчатый гранулятор одновременно с водой, распыляемой через форсунку. Свежесформованные гранулы размером 1,1 2,8 мм выдерживают в насыщенных парах воды при температуре 79oC в течение трех часов. Полученные гранулы сушат и прокаливают в потоке сухого воздуха при 900oC в течение шести часов.

Пример 7.

Соединение состава Al2O3способ получения сферического оксида алюминия, патент № 21023210,6 H2O подвергают механохимической активации в дезинтеграторной установке при линейной скорости соударения частиц с ротором способ получения сферического оксида алюминия, патент № 2102321 120 м/с.

Полученный полупродукт подают в непрерывном режиме на тарельчатый гранулятор одновременно с водой, распыляемой через форсунку. Свежесформованные гранулы размером 4 6 мм выдерживают в насыщенных парах воды при температуре 95oC в течение трех часов. Полученные гранулы сушат и прокаливают по методике, описанной в примере 1.

Пример 8.

Соединение состава Al2O#способ получения сферического оксида алюминия, патент № 21023210,6 H2O подвергают механохимической активации в дезинтеграторной установке при линейной скорости соударения частиц с ротором способ получения сферического оксида алюминия, патент № 2102321 80 м/с.

Полученный полупродукт подают в непрерывном режиме на тарельчатый гранулятор одновременно с водой, распыляемой через форсунку. Свежесформованные гранулы размером 4 6 мм выдерживают в насыщенных парах воды при температуре 50oC в течение четырех часов. Полученные гранулы сушат и прокаливают по методике, описанной в примере 1.

Пример 9 по прототипу.

Соединение состава Al2O3способ получения сферического оксида алюминия, патент № 21023210,48 H2O размололи на шаровой мельнице и затем гранулировали на дисковом грануляторе. Полученные гранулы размером 4 6 мм прокалили при температуре 350oC в течение трех часов, затем выдержали в 3% об. растворе NaOH при давлении насыщенных паров воды в интервале температур 100 200oC в течение 10 ч. После этого образец просушили в течение трех часов при 150oC и затем прокалили его в течение трех часов при 800oC.

Данные, характеризующие физико-химические и каталитические свойства полученных катализаторов, представлены в табл. 2.

Статическую емкость сорбента по воде определяли статическим методом. В эксикатор помещали насыщенный раствор хлорида цинка, который при 20oC поддерживает относительную влажность воздуха 10% В бюкс насыпали 50 г отрегенерированного гранулированного оксида алюминия и помещали его в эксикатор на 6 ч. Величину емкости в статических условиях вычисляли по разности веса бюкса с оксидом алюминия до и после насыщения парами воды.

Каталитическую активность образцов в реакции Клауса характеризовали степенью превращения сероводорода и сернистого ангидрида после шести часов испытания образцов в проточном реакторе на гранулах катализатора размером 1

2 мм при температуре 220oC и времени контакта 0,5 с, в составе исходной реакционной смеси, об. H2S 2; SO2 -1, H2O (пары) - 30; He остальное до 100%

Сероемкость полученных образцов в процессе Сульфрен определяли весовым методом при 140oC при следующем составе исходной смеси, об. H2S 1; SО2 0,5; H2О (пары) 30; He остальное до 100% В качестве характеристики сорбционных свойств использовали количество серы, поглощаемое 1 г катализатора.

Данные по сероемкости определяли для образцов, размер гранул которых не превышает 5 мм, поскольку использование гранул большего размера в процессе Сульфрен нецелесообразно из-за уменьшения степени использования зерна катализатора.

Итак, данные, представленные в табл. 2, позволяют сделать вывод, что сферический оксид алюминия, полученный предлагаемым способом, может успешно применяться в промышленности в качестве адсорбента, осушителя и катализатора процессов Клауса и Сульфрен. В результате использования предлагаемого способа упрощается технология получения сферического оксида алюминия за счет того, что из технологического процесса исключаются стадии гидротермальной обработки, отмывки и предварительной термообработки.

Источники информации, принятые во внимание

1. И.П. Мухленов и др. Технология катализаторов. Л. Химия, 1979, с. 106.

2. Патент США N 2915365, 1959, кл. 23 142.

3. Патент США N 2876068, 1959, кл. 23 142.

4. Патент США N 3222129, 1965, кл. 23 141.

5. C. Mistra. "Industrial alumina chemicals", ACS Monograf, 1984, Washington, DC 1986, p. 97 105.

6. В.П. Золотовский, Р.А.Буянов, В.А. Балашов и др. Научные основы приготовления и технологии катализаторов. Минск, 1990, Сб. научных трудов, Новосибирск, 1990, с. 108 118.

7. Патент Великобритании N 1575219, 1980, кл. F 1 S.

8. Патент США N 4359410, 1982 (прототип), кл. 252 463.

9. Патент США N 4364858, 1982, кл. 252 463.

10. П. А. Буянов, О.П. Криворучко, Б.П. Золотовский. О природе термохимической активации кристаллических гидроксидов. Изв. СО АН СССР, 1986, сер. хим. наук, вып. 4, N 11, с. 39 44.

11. О.П. Криворучко, Ю.Ю. Танашев, Ю.И. Аристов, В.Н. Пармон. II Международная выставка-семинар "Катализ-94. Актуальные проблемы производства катализаторов и промышленного катализа". Часть 1, Новосибирск, 1994, с. 48 - 53.

12. Б. П. Золотовский, Р.А. Буянов, Г.А. Бухтиярова, В.В. Демин, А.М. Цыбулевский. II Международная выставка- семинар "Катализ-94. Актуальные проблемы производства катализаторов и промышленного катализа". Часть 1, Новосибирск, 1994, с. 74 87.

13. З.Р. Исмагилов, Р.А. Шкрабина, Г.П. Баранник, М.А. Керженцев. II Международная выставка-семинар "Катализ-94. Актуальные проблемы производства катализатора и промышленного катализа". Часть 1, Новосибирск, 1994, с. 54 - 64.

14. Патент ФРГ N 2059946, кл. C 01 F 7/02.

Класс C01F7/02 оксид алюминия; гидроксид алюминия; алюминаты 

способ получения альфа-фазы оксида алюминия -  патент 2528979 (20.09.2014)
корундовая микропленка и способ ее получения /варианты/ -  патент 2516823 (20.05.2014)
способ синтеза композиционного металлооксида и композиционный металлооксид, полученный этим способом -  патент 2515430 (10.05.2014)
способ получения металлургического глинозема с применением летучей золы, образующейся в кипящем слое -  патент 2510365 (27.03.2014)
способ получения гранулированного сорбента -  патент 2503619 (10.01.2014)
катализатор селективного гидрирования и способ его получения -  патент 2490060 (20.08.2013)
способ получения широкопористого гамма-оксида алюминия -  патент 2482061 (20.05.2013)
способ переработки красных шламов глиноземного производства -  патент 2480412 (27.04.2013)
способ получения активного оксида алюминия -  патент 2473468 (27.01.2013)
способ получения высокодисперсного гидроксида алюминия и оксида алюминия на его основе -  патент 2465205 (27.10.2012)
Наверх