способ получения электроэнергии при бесшахтной углегазификации и/или подземном углесжигании

Классы МПК:E21B43/295 газификация полезных ископаемых, например для получения смеси горючих газов
Автор(ы):,
Патентообладатель(и):Васючков Юрий Федорович,
Воробьев Борис Михайлович
Приоритеты:
подача заявки:
1995-10-31
публикация патента:

Изобретение относится к горной промышленности и может быть использовано для прямого, на месте залегания угольных пластов, получения электрической энергии при эксплуатации метаноносных месторождений угля путем совместного метанодренажа и газификации угля в массиве. Обеспечивает повышение эффективности получения электро- и/или тепловой энергии за счет совместного использования теплосодержания метана и генераторного газа. Достигается также увеличение коэффициента использования тепловой энергии угля. Осуществляют формирование панелей-блоков угля. Новым является то, что одновременно с газификацией и/или сжиганием угля на одних панелях на других близлежащих панелях осуществляют дегазацию с отсосом метана. Полученный при этом метан смешивают с генераторным газом перед подачей на газовую турбину с электрогенератором. Панели угольного массива последовательно подвергают сначала дегазации, а затем газификации. 3 з.п. ф-лы, 4 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5

Формула изобретения

1. Способ получения электроэнергии при бесшахтной углегазификации и/или подземном углесжигании, включающий газификацию и/или сжигание угля в массиве и отвод генераторного газа на газовую турбину с электрогенератором, отличающийся тем, что одновременно с газификацией и/или подземным сжиганием на одних эксплуатируемых участках-панелях угольного массива, на других близлежащих панелях осуществляют дегазацию с отсосом метана, при этом полученный в результате метан смешивают с генераторным газом перед подачей на газовую турбину, а панели угольного массива последовательно подвергают сначала дегазации, а затем газификации.

2. Способ по п.1, отличающийся тем, что тепло генераторного газа, полученное от охлаждения последнего после вывода из угольного массива, отводят на паровую турбину и осуществляют выработку электроэнергии по комбинированному циклу с использованием газовой и паровой турбин, работающих на один электрогенератор.

3. Способ по п.1, отличающийся тем, что в массив угля бурят скважины с поверхности и используют их сначала как дегазационные для отсоса метана, а затем для подачи дутья в огневой забой подземного газогенератора и отвода генераторного газа.

4. Способ по п.1, отличающийся тем, что отсосу метана и газификации подвергают некондиционные запасы угля для повышения степени использования угольных месторождений как источник невозобновляемой энергии.

Описание изобретения к патенту

Изобретение относится к горной промышленности и может быть использовано для выработки электрической энергии. Способ может быть эффективно применен при эксплуатации угольных месторождений с кондиционными и некондиционными запасами при достаточно высокой газоносности (более 8 10 м3/т) угольных пластов.

Известны два технологически не связанные способа бесшахтного метанодренажа путем бурения скважин с поверхности и бесшахтной подземной газификации угля в массиве. В первом случае метан полученный из скважин, используется как газообразное топливо, а во втором случае генераторный газ для бытовых целей и выработки электроэнергии на тепловых станциях.

Недостатками известных способов являются большие затраты и низкая производительность труда (высокая трудоемкость и, следовательно, высокая себестоимость энергии). Кроме того, оба известных способа характеризуются небольшим коэффициентом полезного действия получения и использования энергии, заключенной в угольных пластах, так как в первом случае при дренаже метана используется только энергия метана, а во втором случае не используется только энергия метана, а во втором случае не используется газ метан как носитель энергии. А генераторный газ является низкокалорийным, что требует больших капитальных затрат.

Предлагаемый метод может применяться в широком диапазоне горно-геологических условий:

пласты с энергетическими углями;

угольные пласты со средней и высокой газоносностью;

пласты мощностью 0,4 0,5 м и выше;

умеренная обводненность месторождения;

умеренная нарушенность месторождения, особенно нежелательны дизъюнктивные нарушения (сбросы, выбросы);

достаточно плотные толщи покрывающих пород;

угли высокозольные;

угли с высоким содержанием серы;

участки угольных месторождений; непредусматриваемые к обработке традиционными методами (шахтами или карьерами);

оставшиеся запасы угля на закрытых шахтах (предохранительные целики, неотработанные участки шахтных полей, участки шахтных полей с некондиционными запасами).

Таким образом, предлагаемый комбинированный метод может найти применение на пластах средней и повышенной газоносности (по метану), отработка которых, по тем или иным соображениям, не может быть произведена традиционными методами по причине недостаточной мощности пластов угля, высокого содержания серы, высокой зольности угля и др. То есть данный метод может найти применение для отработки забалансовых углей, которые в настоящее время не могут быть отработаны традиционными методами с достаточным экономическим эффектом.

Известен способ получения электрической энергии при подземной газификации угля, являющийся наиболее близким к заявленному и поэтому взятый за прототип, заключающийся в бурении скважин в угольный массив, подаче дутья и газификации угля в массиве, отсоса продуктивного газа газификации и подаче его на газовую турбину, приводящую в действие электрогенератор.

Недостатками известного способа являются низкий коэффициент полезного действия (низкая полнота извлечения энергии из газоносной толщи и ее использования), большие затраты на производство электроэнергии и малая производительность труда, следствием чего является высокая себестоимость полученной электроэнергии.

Целью изобретения является повышение эффективности получения и использования энергии, заключенной в угольных пластах кондиционных и некондиционных запасов за счет повышения полноты извлечения энергии из угленосной толщи при одновременном снижении затрат.

Это достигается тем, что одновременно используются два энергоносителя: метан угленосных толщ и генераторный газ, который является дополнительным носителем тепловой энергии; кроме того, используется комбинированный цикл выработки электроэнергии, при котором сочетаются газовая (на базе метана и генераторного газа) и паровая (работающая от тепла газов) турбины, работающие на один общий электрогенератор.

Сущность метода заключается в органическом и технологическом объединении технологии дегазации угольных пластов с поверхности и подземной газификации угля в массиве. Оба процесса осуществляются непрерывно и совмещены во времени; дегазации угольного массива предшествует его газификации.

Дренаж метана осуществляется через скважины, пробуренные с поверхности с последующим использованием этих скважин для газификации угля в массиве. Таким образом, предлагается бесшахтная технология использования энергии, заключенной в угле и вмещающих породах.

В результате дегазации (на первой стадии) из угольного массива откачивается метан, а на второй осуществляется газификация угольного массива с получением энергетического газа. Оба продукта метан и генераторный газ - используются в смеси для выработки электроэнергии на тепловой электростанции.

Первая стадия комплексного процесса дренаж метана осуществляется с поверхности через скважины (вертикальные, наклонные и горизонтальные) с применением стимулирования метаноотдачи путем различных методов (гидроразрыв пласта, кислотная обработка и т.п.).

Вторая стадия газификация угля ведется по методу потока с использованием по возможности ранее пробуренных для метано-каптажных скважин как для розжига, так и для соединения сбойки-канала газификации и для подачи дутья и отвода генераторного газа.

Технологические схемы.

Комбинированная технология формируется из трех базовых технологический решений: метаноотсос с поверхности, подземная углегазификация и подземное сжигание угля. Возможные комбинационные сочетания представлены в таблице.

Технологическая схема II предлагается в качестве основной, так как составляющие базовые технологические решения метанодренаж с поверхности и подземная углегазификация являются каждая по себе в наибольшей степени опробированными в промышленности. Поэтому патентная заявка рассматривается в основном для данной комбинированной технологической схемы. Технологические параметры и последовательность работ приводятся для II комбинированной технологической схемы для эксплуатации пологопадающих пластов (10 25o) средней мощности, при этом весь комплекс работ ведется только через скважины, пробуренные с поверхности (бесшахтный метод).

Принципиальная схема раскройки шахтного поля и отработки панелей в шахтном поле показана на фиг. 1. В качестве границ панелей по простиранию принимаются угольные целики шириной 3 5 м (на фиг. 1 не показаны) или дизъюнктивные нарушения (сбросы, взбросы, сдвиги). Ширина панели по простиранию может колебаться в пределах 50 80 м, а по падению 100 150 м. Эти размеры должны уточняться в каждом конкретном случае в зависимости от конкретных горно-геологических условий.

Начальный период развития работ в этаже/крыле шахтного поля показан на фиг. 2. В этот период 1-я панель дегазируется через скважины, пробуренные с поверхности. Метан из угольной толщи по трубопроводу отсасывается и используется в газовой турбине для выработки электроэнергии. Первая панель полностью подготовлена к отсосу метана путем гидрорасчленения или физико-химической обработки пласта угля для интенсификации метаноотдачи. После завершения дегазации 1-й панели здесь начнется подготовка поземного газогенератора, а во 2-й панели таким же образом будет вестись метаноотсос.

Схема подготовки и отработки панелей при нормальном развитии работ показана на фиг. 3, где

1 дутьевая скважина газифицируемой панели;

2 газоотводная скважина (генераторный газ) газифицируемой панели;

3 метаноотводящая скважина дегазируемой подготавливаемой панелей;

4 сбойка первоначальный розжиговый канал;

5 встречные забои сбойки розжигового канала;

6 скважины в процессе бурения;

7 огневой забой подземного газогенератора;

8 шлак зола;

9 дутьевой трубопровод;

10 газоотводящий трубопровод;

11 метано-дренажный трубопровод;

12 магистральный трубопровод смешанного газа (метан + генераторный газ). После выгазовывания n-2 панели процесс углегазификации производится в n-1 панели. Дутье в огневой забой 7 подается по дутьевой скважине 1, а газогенераторный газ отводится по скважине 2. Процесс газификации угля панели n-1 производится по традиционной технологии непрерывной бесшахтной газификации угля в массиве.

В смежной n-й панели ведется метаноотсос через две наклонные метаноотводящие скважины 3. При этом используется традиционная технология дренажа метана через наклонные скважины, пробуренные с поверхности. Дренируемый метан поступает в сборный трубопровод 11. В этот же трубопровод поступает метан из n+1 панели, где производится образование розжигового канала встречными забоями 5. В n+2 панели бурятся две наклонные скважины 6 по пласту угля.

При синхронном (во времени) выгазовывания панели n-1 и дегазации угля в панели n к моменту завершения газификации панели n-1 завершается дегазация угля n-й панели; этот идеальный случай позволит иметь одну панель в процессе газификации и одну смежную панель в процессе дегазации. В противном случае необходимо произвести расчет количества панелей, находящихся в одновременной газификации и соответствующего количества дегазируемых панелей.

Метаноотводящие скважины 3 после завершения дренажа могут быть использованы в газифицируемой панели в качестве дутьевой- и газоотводной, что приведет к существенному снижению затрат на бурение и обустройство скважин. Таким образом, подземная газификация угля в массиве и метанодренаж через скважины поверхности проверены и освоены в промышленном масштабе, что является гарантией успешного применения предлагаемого изобретения.

Принципиальная технологическая схема бесшахтного совместного метана-дренажа и углегазификации в массиве показана на фиг. 4, где

2 оборудование механической очистки газа;

3 оборудование химической очистки газа;

4 газовая турбина;

5 паровая турбина;

6 электрогенератор;

7 дымосос;

8 воздуходувка;

9 буровой станок (наклонное бурение);

10 первоначальный розжиговый канал (сбойка);

11 огневой забой подземного газогенератора;

12 встречные забои розжигового канала;

13 дутьевая скважина;

14 газоотводная скважина;

15 метаноотводящая скважина;

16 наклонные скважины по пласту в период бурения;

17 наклонные скважины подготавливаемой панели;

18 межпанельный целик;

19 линия электропередачи (к потребителю);

20 трубопровод для подачи дутья от воздуходувки;

21 трубопровод для отвода генераторного газа;

22 трубопровод для подачи пара к турбине;

23 газопровод (метан + генераторный аз);

24 трубопровод холодной воды;

25 трубопровод для отвода каптированного метана.

На схеме (фиг. 4) представлены: n-2 панель дегазирована и углегазифицирована; n-1 панель в стадии газификации; n-я панель в стадии дегазации (дренаж каптируемого метана); n+1 розжигового канала, для образования огневого забоя подземного газогенератора; в период дегазации эта сбойка позволяет обеспечивать более глубокую степень дегазации панели; n+2 панель в стадии бурения двух наклонных скважин с поверхности.

Подземная газификация угля в n-1 ведется по традиционной технологии. Дутье от воздуходувки 8 по трубопроводу 20 подается через дутьевую скважину 13 в огневой забой 11. Генераторный газ отводится по скважине 14, а затем по трубопроводу 21 к теплообменнику 1. Охлажденный газ смешивается с каптированным метаном, поступающим по газопроводу 25. Дренаж метана осуществляется одновременно в n-й и n+1 панелях. Смешанный газ (генераторный газ + метан) проходит сначала механическую очистку в устройстве 2, а затем химическую очистку в 3. Облагороженный таким образом смешанный газ по газопроводу 23 подается в газовую турбину 4, которая совместно с паровой турбиной 5 приводит в действие электрогенератор 6. Электроэнергия от генератора по линии электропередачи 19 подается потребителям. Дымоотвод от газовой турбины осуществляется дымососом 7. Вода к теплообменнику 1 подается по трубопроводу 24. Образовавшийся в теплообменнике пар по трубопроводу 22 подается к паровой турбине 5.

Способ осуществляется путем одновременного метаноотсоса и подземной газификации угля в массиве; полученный таким образом смешанный газ (метан + генераторный газ) с высокой теплотворной способностью используется в газовой турбине. Тепло, отбираемое от генератора газа, используется для образования пара, который используется в паровой турбине, работающей в тандеме с газовой турбиной. Принцип двухстадийной обработки панелей (1-я стадия метаноотсос, а 2-я стадия подземная углегазификация) позволит существенно повысить коэффициент полезного действия получения электроэнергии бесшахтным способом по предлагаемой технологии; при этом создается возможность существенно снизить стоимость единицы электроэнергии. Кроме того, предлагаемая технология получения электроэнергии является экологически чистой. Социальный эффект достигается отсутствием людей, работающих под землей (бесшахтный метод).

Класс E21B43/295 газификация полезных ископаемых, например для получения смеси горючих газов

способ комплексного освоения месторождений бурого угля -  патент 2526953 (27.08.2014)
способ подземной газификации тонких и средней мощности пластов бурого угля -  патент 2522785 (20.07.2014)
способ подземной огневой разработки залежи горючих сланцев -  патент 2521688 (10.07.2014)
способ подземной газификации -  патент 2521255 (27.06.2014)
способ извлечения высокомолекулярного сырья нефтегазоконденсатного месторождения -  патент 2519310 (10.06.2014)
способ утилизации диоксида углерода (со2)из газа подземной газификации угля (пгу) -  патент 2513947 (20.04.2014)
способ управления газовыделением при отработке склонного к самовозгоранию угольного пласта -  патент 2512049 (10.04.2014)
способ подземной газификации угля -  патент 2490445 (20.08.2013)
способ подземной газификации -  патент 2477788 (20.03.2013)
способ производства водорода при подземной газификации угля -  патент 2443857 (27.02.2012)
Наверх