ультразвуковой способ измерения характеристик напряженно- деформированного состояния болтовых и шпилечных соединений

Классы МПК:G01N29/00 Исследование или анализ материалов с помощью ультразвуковых, звуковых или инфразвуковых волн; визуализация внутреннего строения объектов путем пропускания через них ультразвуковых или звуковых волн через предметы
Автор(ы):, ,
Патентообладатель(и):Йелстаун Корпорейшн Н.В. (AN)
Приоритеты:
подача заявки:
1996-10-17
публикация патента:

Использование: методы диагностики материалов и конструкций и измерение напряженно-деформированного состояния болтовых и шпилечных резьбовых соединений при строительстве, монтаже и эксплуатации объектов ответственного назначения в различных отраслях промышленности и транспорта: тепловая и атомная энергетика, машиностроение, химическая и др. Сущность изобретения: в исследуемом соединении одновременно или последовательно создают непрерывные ультразвуковые колебания продольных и сдвиговых волн до и после затяжки, принимают прошедшие через исследуемое соединение ультразвуковые колебания, измеряют резонансные частоты этих волн и по их соотношению определяют величины механического напряжения и относительной деформации. Кроме того, дополнительно контролируют нелинейные искажения колебаний и по их появлению судят о наличии дефектов в исследуемом соединении. 1 з. п. ф-лы, 1 ил.
Рисунок 1

Формула изобретения

1. Ультразвуковой способ определения механических характеристик материала элементов болтовых и шпилечных соединений, заключающийся в том, что в исследуемом соединении создают непрерывные ультразвуковые колебания до и после затяжки, принимают прошедшие через исследуемое соединение ультразвуковые колебания и измеряют их параметры, по соотношению которых судят о состоянии материала элементов соединения, отличающийся тем, что одновременно или последовательно в исследуемом соединении создают ультразвуковые колебания продольных и сдвиговых волн, измеряют резонансные частоты этих волн до и после затяжки исследуемого соединения, а величины механического напряжения ультразвуковой способ измерения характеристик напряженно-  деформированного состояния болтовых и шпилечных соединений, патент № 2099698 и относительной деформации e определяют по формулам

ультразвуковой способ измерения характеристик напряженно-  деформированного состояния болтовых и шпилечных соединений, патент № 2099698

ультразвуковой способ измерения характеристик напряженно-  деформированного состояния болтовых и шпилечных соединений, патент № 2099698

где E0 модуль упругости материала;

m - коэффициент Пуассона материала;

ультразвуковой способ измерения характеристик напряженно-  деформированного состояния болтовых и шпилечных соединений, патент № 2099698, ультразвуковой способ измерения характеристик напряженно-  деформированного состояния болтовых и шпилечных соединений, патент № 2099698 - напряжение и относительная деформация исследуемого объекта;

ультразвуковой способ измерения характеристик напряженно-  деформированного состояния болтовых и шпилечных соединений, патент № 2099698 относительные изменения резонансных частот;

foL, fнL - значения резонансных частот продольных колебаний до и после приложения внешней нагрузки;

foT, fнT - то же, для сдвиговых колебаний.

2. Способ по п. 1, отличающийся тем, что дополнительно контролируют нелинейные искажения колебаний и по их появлению судят о наличии дефектов в исследуемом соединении.

Описание изобретения к патенту

Изобретение относится к области неразрушающих методов диагностики материалов и конструкций и может быть использовано для измерения напряженно-деформированного состояния (НДС) болтовых и шпилечных резьбовых соединений при строительстве, монтаже и эксплуатации объектов ответственного назначения в различных отраслях промышленности и транспорта (тепловая и атомная энергетика, машиностроение, химическая и др.)

Известен ультразвуковой (УЗ) способ контроля механических напряжений в твердых телах, заключающийся в излучении в изделие до приложения нагрузки и после приложения двух импульсов УЗ-колебаний сдвиговых волн с взаимно перпендикулярной ориентацией вектора смещения, измерении изменения их скоростей и вычислении величины напряжения по относительному изменению скорости УЗ-колебаний и акустоупругому коэффициенту [1] Недостатком этого способа является низкая точность, обусловленная фактическим непостоянством акустоупругого коэффициента при изменении величины напряжения.

Известен также способ контроля внутренних механических напряжений, заключающийся в том, что в изделие вводят непрерывные УЗ-колебания до приложения внешней нагрузки и после, измеряют нелинейные искажения установившихся колебаний после приложения нагрузки и по ним судят о величине внутренних напряжений [2]

Недостатками этого способа являются низкие чувствительность и точность, а также недостаточная достоверность, что обусловлено невозможностью точной компенсации влияния температуры, изменений длины исследуемого тела в процессе его нагружения и др. факторов.

Наиболее близким к предполагаемому изобретению является способ УЗ-контроля внутренних напряжений, заключающийся в том, что исследуемый объект (болт) вдоль его оси вводят непрерывные УЗ-колебания до и после приложения нагрузки, анализируют параметры установившихся колебаний и по их соотношению судят о величине внутренних напряжений [3]

Недостатком этого способа является низкая точность и недостаточная достоверность результатов, обусловленные зависимостью параметров УЗ-колебаний от температуры объекта, его геометрии и свойств материала.

Но основными недостатками всех известных способов диагностики напряженно-деформированного состояния материалов в объектах ответственного назначения являются:

невозможность определения второй необходимой характеристики НДС - относительной деформации. Дело в том, что знание только величины напряжения практически ничего не дает, т. к. механические характеристики материалов имеют большой (до 25% ) разброс и достоверность НДС материала в области нагрузок, близких к пределу текучести, где наряду с упругими деформациями возникают микропластические деформации такого же порядка, становился недопустимо малой;

невозможность применения известных способов в условиях упругопластических деформаций, когда меняются упругие константы материалов.

Эти недостатки и объясняют низкий спрос на существующие средства измерения напряжений при росте актуальности задачи определения НДС материалов ответственных конструкций.

Задачей, на решение которой направлено предлагаемое изобретение, является определение двух необходимых характеристик НДС: напряжения и относительной деформации в широком диапазоне нагрузок, вплоть до разрушения, для обеспечения достаточной для оценки безопасности дальнейшей эксплуатации объекта достоверности и расширения области применения способа при измерениях НДС.

Дополнительной, но важной задачей, которая решается предлагаемым изобретением, является обнаружение возникших при затяжке болтовых или шпилечных соединений дефектов типа трещин напряженно-усталостного происхождения.

Решение поставленной задачи достигается тем, что в ультразвуковом способе определения механических характеристик материала элементов болтовых и шпилечных соединений, заключающемся в том, что в исследуемом соединении создают непрерывные ультразвуковые колебания до и после затяжки, принимают прошедшие через исследуемое соединение ультразвуковые колебания и измеряют их параметры, по соотношению которых судят о состоянии материала элементов соединения, одновременно или последовательно в исследуемом соединении создают ультразвуковые колебания продольных и сдвиговых волн, измеряют резонансные частоты этих волн до и после затяжки исследуемого соединения, а величины механического напряжение ультразвуковой способ измерения характеристик напряженно-  деформированного состояния болтовых и шпилечных соединений, патент № 2099698 и относительной деформации e определяют по формулам:

ультразвуковой способ измерения характеристик напряженно-  деформированного состояния болтовых и шпилечных соединений, патент № 2099698

где Eo модуль упругости материала;

m коэффициент Пуассона материала;

s, ультразвуковой способ измерения характеристик напряженно-  деформированного состояния болтовых и шпилечных соединений, патент № 2099698 напряжение и относительная деформация исследуемого объекта;

ультразвуковой способ измерения характеристик напряженно-  деформированного состояния болтовых и шпилечных соединений, патент № 2099698 относительные изменения резонансных частот;

foL, fнL значения резонансных частот продольных колебаний до и после приложения внешней нагрузки;

foT, fнT то же, для сдвиговых колебаний.

Кроме того, дополнительно контролируют нелинейные искажения колебаний и по их появлению судят о наличии дефектов в исследуемом соединении.

Известен способ контроля напряженного состояния материала, заключающийся в том, что в исследуемый объект вводят продольные и сдвиговые колебания [4] Однако этот способ не дает возможности определить относительную деформацию, что снижает достоверность результатов измерения НДС, кроме того, работоспособен этот способ только в упругой области нагружений и требует предварительной тарировки на образцах, а значит не имеет достаточной точности вследствие различия свойств образцов и исследуемого объекта. Указанные недостатки известного способа свидетельствуют о том, что он не решает поставленных задач.

На чертеже представлена блок-схема простейшего устройства, реализующего УЗ-способ измерения характеристик напряженно-деформированного состояния исследуемого объекта (болта, шпильки).

Устройство для реализации способа состоит из перестраиваемого генератора непрерывных колебаний 1, блока ультразвуковых преобразователей 2, вводящих ультразвуковые колебания в исследуемый объект (болт, шпильку) 3, приемно-усилительного тракта 4, к выходу которого подключены частотомер 5 и анализатор нелинейных искажений 6, в свою очередь, выходы частотомера и анализатора соединены с входом вычислительного блока 8, соединенного с индикатором 9. Работа устройства координируется коммутатором 7.

Реализуется способ измерения НДС, например шпильки, следующим образом. На торцевую поверхность шпильки 3, предварительно подготовленную к измерениям путем зачистки поверхности и смачивания ее контактной жидкостью, устанавливается блок ультразвуковых преобразователей 2. В незатянутую шпильку вводятся непрерывные УЗ-колебания, возбуждаемые генератором 1. Устанавливая коммутатором 7 режим работы на продольных колебаниях и перестраивая частоту генератора 1, определяют частотомером 5 значение резонансной частоты продольных колебаний foL Это значение поступает в вычислительный блок 8. Затем коммутатором 7 устанавливают режим работы на сдвиговой волне и повторяют операцию по определению резонансной частоты foT После затягивания резьбового соединения вновь проводят операции измерения резонансных частот теперь уже fнL и fнT вблизи прежних значений. Поступившая в вычислительный блок 8 информация обрабатывается по формулам (1). Помимо описанных операций, сигналы с выхода усилительного тракта 4, поступая на анализатор нелинейных искажений, подвергаются соответствующей обработке и при наличии искажений информация о них поступает на вычислительный блок 8, который, в свою очередь, передает на индикатор 9 сигнал о наличии дефекта и его характере.

Использование разработанного способа позволит за счет получения двух характеристик НДС, повышая точность и достоверность их значений, повысить надежность прогноза сроков безопасной эксплуатации ответственных конструкций в объектах повышенной опасности для человека и окружающей среды. Это и определяет экономический эффект от внедрения разработанного способа.

Класс G01N29/00 Исследование или анализ материалов с помощью ультразвуковых, звуковых или инфразвуковых волн; визуализация внутреннего строения объектов путем пропускания через них ультразвуковых или звуковых волн через предметы

инспекционное устройство для обнаружения посторонних веществ -  патент 2529667 (27.09.2014)
способ измерения продольного и сдвигового импендансов жидкостей -  патент 2529634 (27.09.2014)
устройство контроля при контролировании посторонних веществ -  патент 2529585 (27.09.2014)
способ акустико-эмиссионного контроля качества сварных стыков рельсов и устройство для его осуществления -  патент 2528586 (20.09.2014)
система ультразвукового контроля -  патент 2528578 (20.09.2014)
образец для тестирования и настройки установки ультразвукового контроля листового проката -  патент 2528111 (10.09.2014)
способ непрерывного контроля средней влажности волокон в волоконной массе -  патент 2528043 (10.09.2014)
способ лабораторного контроля влажности волокон в массе -  патент 2528041 (10.09.2014)
способ лабораторного контроля средней тонины волокон в массе -  патент 2527146 (27.08.2014)
способ измерения влажности нефти -  патент 2527138 (27.08.2014)
Наверх