способ термической обработки труб

Классы МПК:C21D9/08 полых изделий или труб 
C21D8/10 при изготовлении полых изделий
Автор(ы):, , , , , , , , , , ,
Патентообладатель(и):Акционерное общество "Северский трубный завод",
Предприятие "Белозерное"
Приоритеты:
подача заявки:
1996-12-15
публикация патента:

Назначение: производство электросварных и бесшовных труб, изготавливаемых на установках с пильгерстаном для производства труб нефтяного сортамента, а также соединительных деталей к ним, стойких к коррозионному растрескиванию в средах, содержащих Н2S и СО2. Сущность изобретения: по способу термической обработки труб, включающему первый нагрев выше Ас3, охлаждение в воде, второй нагрев в межкритический интервал температур (Ас1 - Ас3), охлаждение и высокий отпуск с последующим охлаждением на воздухе, первый нагрев ведут до Ас3 - (Ас3+50)oС, после второго нагрева охлаждают в воде, а нагрев под отпуск до (550 - Ас1)oС. 1 табл.
Рисунок 1

Формула изобретения

Способ термической обработки труб, включающий первый нагрев выше Асз, охлаждение в воде, второй нагрев в межкритический интервал температур (Ас1 Ас3), охлаждение и высокий отпуск с последующим охлаждением на воздухе, отличающийся тем, что первый нагрев ведут до Ас3 (Ас3 + 50)oС, после второго нагрева охлаждают в воде, а нагрев под отпуск ведут до (550 Ас1)oС.

Описание изобретения к патенту

Изобретение относится к металлургии стали и может быть использовано при изготовлении бесшовных и электросварных труб нефтяного сортамента и соединительных деталей, хладостойких к коррозионному растрескиванию в средах, содержащих Н2S и СО2 (СКРН).

Данный способ преимущественно применим для мало-, среднеуглеродистых сталей, а также комплекснолегированных углеродистых сталей.

Известен способ термической обработки сварных труб, включающий нормализацию сварного шва, после которой производят неполную закалку и отпуск [1]

Однако при такой обработке сохраняется структурная неоднородность зоны шва и остальной части периметра, а применительно к бесшовным трубам, сортамента установок с пильгерстаном наблюдается присущая этому способу значительная структурная неопределенность по толщине стенки и длине труб. В результате после термической обработки сохраняется анизотропия свойств, трубы обладают низкой хладостойкостью и стойкостью к сульфидному коррозионному растрескиванию под напряжением.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому является способ термической обработки трубных изделий из конструкционных сталей, включающий первый нагрев выше Ас3, охлаждение в воде, второй нагрев в межкритический интервал температур (Ас1 Ас3), охлаждение и высокий отпуск с последующим охлаждением на воздухе [2]

Этот способ несколько повышает пластические свойства и ударную вязкость по линии сплавления, но значения ударной вязкости при температуре -40oС и коррозионные свойства остаются ниже требуемых.

Технической задачей изобретения является разработка способа термической обработки электросварных и бесшовных труб нефтяного сортамента, а также соединительных деталей к ним, обеспечивающего повышение хладостойкости и коррозионной стойкости в средах, содержащих Н2S и СО2 и повышению тем самым надежности этих изделий.

Согласно изобретению поставленная задача решается тем, что в способе термической обработки труб, включающем первый нагрев выше Ас3, охлаждение в воде, второй нагрев в межкритический интервал температур (Ас1 Ас3), охлаждение и высокий отпуск с последующим охлаждением на воздухе, первый нагрев ведут до Ас3 (Ас3 + 50)oС, после второго нагрева охлаждают в воде, а нагрев под отпуск ведут до (550 Ас1)oС.

При первом нагреве до температуры Ас3 (Ас3+50)oС, исходное зерно в результате фазовой перекристаллизации измельчается, после охлаждения в воде структура по всему объему трубы состоит из мартенсита и бейнита, которые в свою очередь имеют дисперсную структуру. При повторном нагреве в критическом интервале температур (Ас3 Ас1)oС аустенитные участки равномерно располагаются в феррите, поскольку зародыши аустенита образуются в местах с высокой концентрацией дислокаций и атомов углерода, а также на границах мартенситных кристаллов и вокруг бейнитных карбидов. При этом происходит дополнительное измельчение аустенитного зерна, а феррит приобретает полигонизованную структуру, так как не подвергается фазовой перекристаллизации. После охлаждения в воде равномерно распределенных участках аустенита образуется мартенсит, а последующий отпуск приводит к образованию однородной дисперсной структуры полигонизованного феррита с мелкими коагулированными частицами цементита. Кроме того, в результате значительного повышения удельной поверхности межзеренных границ происходит снижение концентрации вредных примесей по границе аустенита. Все это приводит к формированию благоприятного структурного состояния с точки зрения сопротивления хрупкому разрушению и коррозионной повреждаемости.

Предлагаемый способ термической обработки труб и соединительных деталей к ним осуществляется следующим образом.

После прокатки или сварки трубы и соединительных деталей их охлаждают на воздухе, затем производят первый нагрев в секционной проходной печи до температуры Ас3 (Ас3+50)oС, охлаждают в водяном спрейере, проводят второй нагрев до температуры (Ас3 Ас1)oС, охлаждают в водяном спрейере и проводят отпуск в проходной печи при температуре (550 Ас1)oС.

Способ был апробирован в промышленных условиях на электросварных трубах 219 х 5-8 мм и бесшовных трубах размером (219-325) х (8-25) мм, полученных на установке с пильгерстаном. Результаты лабораторных и промысловых испытаний приведены в таблице.

Как видно из таблицы, высокие результаты, относящиеся к задаче изобретения, получены как на бесшовных, так и на электросварных трубах. По сравнению с прототипом снижена анизотропия свойств, значения ударной вязкости при температуре -40oС на поперечных образцах возросли примерно в 8 раз, пороговое напряжение СКРН на 106% а стойкость к коррозии на 59%

Изобретение может быть промышленно использовано в производстве электросварных и бесшовных труб, изготавливаемых на установках с пильгерстаном для производства труб нефтяного сортамента, а также соединительных деталей к ним, стойких к коррозионному растрескиванию в средах, содержащих Н2S и СО2.

Класс C21D9/08 полых изделий или труб 

способ изготовления ствола стрелкового оружия -  патент 2525501 (20.08.2014)
способ термомеханической обработки трубы -  патент 2500821 (10.12.2013)
стенд для закалки валов и трубных деталей -  патент 2499058 (20.11.2013)
высокопрочная бесшовная стальная труба, обладающая очень высокой стойкостью к сульфидному растрескиванию под напряжением для нефтяных скважин и способ ее изготовления -  патент 2493268 (20.09.2013)
устройство для термоправки одногофровых сильфонов -  патент 2490338 (20.08.2013)
способ термической обработки сварных труб -  патент 2484149 (10.06.2013)
способ термообработки лифтовых труб типа "труба в трубе" -  патент 2479647 (20.04.2013)
способ термической обработки лифтовых труб типа "труба в трубе" -  патент 2478125 (27.03.2013)
нефтегазопромысловая бесшовная труба из мартенситной нержавеющей стали и способ ее изготовления -  патент 2468112 (27.11.2012)
способ термической обработки лифтовых труб малого диаметра типа "труба в трубе" -  патент 2467077 (20.11.2012)

Класс C21D8/10 при изготовлении полых изделий

нержавеющая сталь для нефтяной скважины, труба из нержавеющей стали для нефтяной скважины и способ получения нержавеющей стали для нефтяной скважины -  патент 2494166 (27.09.2013)
высокопрочная бесшовная стальная труба, обладающая очень высокой стойкостью к сульфидному растрескиванию под напряжением для нефтяных скважин и способ ее изготовления -  патент 2493268 (20.09.2013)
способ изготовления тройников (варианты) -  патент 2492952 (20.09.2013)
трубная заготовка из легированной стали -  патент 2480532 (27.04.2013)
трубная заготовка из легированной стали -  патент 2479663 (20.04.2013)
стальной лист для производства магистральной трубы с превосходной прочностью и пластичностью и способ изготовления стального листа -  патент 2478133 (27.03.2013)
трубная заготовка из легированной стали -  патент 2469107 (10.12.2012)
нефтегазопромысловая бесшовная труба из мартенситной нержавеющей стали и способ ее изготовления -  патент 2468112 (27.11.2012)
способ (варианты) и устройство для изготовления упрочненных формованных деталей -  патент 2467076 (20.11.2012)
способ термической обработки холоднодеформированных труб -  патент 2464326 (20.10.2012)
Наверх