гибридный рецепторотоксин s304 и фрагмент днк ns 304, кодирующий гибридный рецепторотоксин s 304

Классы МПК:C12N15/12 гены, кодирующие животные белки
C12N15/31 гены, кодирующие микробные белки, например энтеротоксины
Автор(ы):, , , ,
Патентообладатель(и):Сидоров Александр Викторович,
Здановский Алексей Геннадьевич,
Зверев Виталий Васильевич,
Пугач Андрей Викторович,
Малюшова Вера Васильевна
Приоритеты:
подача заявки:
1994-06-14
публикация патента:

Использование: биотехнология и медицина. Сущность: получение гибридного рецепторотоксина S304, состоящего из двух фрагментов. Первый фрагмент является фрагментом дифтерийного токсина, а второй - фрагментом CD4-рецептора Т-лимфоцитов человека. Гибридный белок ингибирует цитопатическое действие вируса иммунодефицита человека. Кроме того, сущность изобретения заключается в получении фрагмента ДНК NS304, кодирующего данный рецепторотоксин. 2 с.п. ф-лы, 4 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4

Формула изобретения

1. Гибридный рецепторотоксин S 304, полученный путем экспрессии в бактериальной системе E.coli, состоящий из фрагмента дифтерийного токсина и фрагмента CD4 рецептора Т-лимфоцитов человека, имеющий первичную структуру I, приведенную в конце текста формулы и подавляющий цитопатическое действие вируса иммунодефицита человека первого типа in vitro.

2. Фрагмент ДНК NS 304, кодирующий гибридный рецепторотоксин S 304 и имеющий первичную структуру II.

Описание изобретения к патенту

Изобретение относится к биотехнологии, генной инженерии и вирусологии и представляет собой гибридный полипептид рецепторотоксин, в котором токсическая часть представляет собой А-фрагмент и неполный B-фрагмент дифтерийного токсина (DT), а рецепторная часть N-концевой фрагмент CD4-рецептора Т-лимфоцитов человека. Полипептид проявляет антивирусную (вирус иммунодефицита человека (ВИЧ)) активность в системе in vitro и является потенциальным терапевтическим агентом при синдроме приобретенного иммунодефицита, вызываемого ВИЧ. ВИЧ при попадании в организм человека поражает клетки иммунной системы (Т-лимфоциты, моноциты и макрофаги) и клетки центральной нервной системы. Основным путем проникновения ВИЧ в клетку является взаимодействие гликопротеина оболочки вируса gp120 с CD4-рецептором. В этом взаимодействии ключевую роль играют первые два иммуноглобулинподобных домена CD4, расположенных на N-конце молекулы (первые 180 аминокислот) (Nature, 312, 159 161, 1988; 331, 82 84, 1988). На поверхности зараженной клетки экспрессируется gp120 ВИЧ. Показано, что различные растворимые рекомбинантные формы CD4-рецептора, связываясь с ВИЧ, ингибируют как процесс проникновения вируса в чувствительные клетки, так и вирусиндуцированное образование синцитий (Nature, 331, 76 78, 1988; 331, 78 81, 1988). Это предполагает, что различные рекомбинантные формы CD4-рецептора могут быть потенциальными антивирусными агентами при лечении ВИЧ-инфекции. Действие рецепторотоксина основано не только на конкурентном связывании ВИЧ, но и на направленном элиминировании зараженных клеток, так как на поверхности последних экспрессируется вирусный гликопротеин gp120. Например, было показано, что рецепторотоксин на основе CD4-рецептора и экзотоксина А из Pseudomonas aeruginosa блокирует развитие ВИЧ-инфекции in vitro и активен против клеток, экспрессирующих гликопротеины оболочки от различных ретровирусов иммунодефицита приматов (PNAS USA, 86, 9539 9543, 1989).

Дифтерийный токсин принадлежит к группе токсинов, способных инактивировать белоксинтезирующий аппарат эукариотической клетки. В DT каталитической активностью обладает N-концевая часть молекулы А-фрагмент (J. Biolog. Chem. 4265, 7331 7337, 1990).

Сущность данного технического решения состоит в том, что предложен оригинальный гибридный полипептид S304, состоящий из полипептида продукта фрагмента гена дифтерийного токсина и полипептида продукта фрагмента гена CD4-рецептора, обладающий анти-ВИЧ активностью in vitro; фрагмент ДНК, кодирующий полипептид S304.

Изобретение иллюстрируется следующими примерами.

Пример 1. Получение и экспрессия в Escherichia coli гибридного полипептида S304.

Гибридный полипептид синтезируется в бактериальной системе E. coli с использованием экспрессирующих плазмидных векторов. В качестве штаммов-продуцентов были использованы трансформированные экспрессирующими векторами производные штаммов TG1 и BL21(DE3). Внедрение плазмидной ДНК в клетки E. coli проводили путем их трансформации с использованием хлорида кальция (J. Mol. Biol. 166, 557 580, 1983).

Нуклеотидная последовательность ДНК, кодирующей гибридный полипептид, была получена путем объединения в составе экспрессирующих векторов последовательностей ДНК, кодирующих фрагменты CD4-рецептора и дифтерийного токсина. Из Т-лимфоцитов периферической крови человека выделяли ДНК (Eur. J. Biochem. 36, 32, 1973), которую затем амплифицировали с помощью цепной полимеразной реакции (Meth. Enzymol. 155, 335, 1987) с использованием олигодезоксирибонуклеотидных зондов: 5"-GCGAGATCTAGTGGAACTGACCTG-3" и 5"-GCGGGATCCTCCAGCTGAGACAC-3" и после обработки эндонуклеазами рестрикции BgIII и BaMHI выделяли из 1% -ной легкоплавкой агарозы фрагмент ДНК, кодирующий участок CD4-рецептора. Аналогичный метод использовали для выделения фрагмента ДНК, кодирующего участок DT. Олигодезоксирибонуклеотиды синтезировали аминофосфитным триэфирным методом в твердофазном варианте с использованием дезоксирибонуклеид-3"- О(гибридный рецепторотоксин s304 и фрагмент днк ns 304,   кодирующий гибридный рецепторотоксин s 304, патент № 2096458-цианэтил-N, N-диизопропиламино)фосфитов (Nucleic Acids Res. 12, 4539, 1984). Определенная методом Сэнгера (PNAS USA, 474, 15463 15467, 1977) первичная структура ДНК, кодирующей гибридный полипептид S304, представлена на фиг. 1.

Приведенная на фиг. 1 последовательность соответствует следующей аминокислотной последовательности, приведенной на фиг. 2.

В гибридном полипептиде присутствуют, таким образом, фрагменты двух белков: дифтерийного токсина и CD4-рецептора. Дифтерийный токсин представлен полным A-фрагментом и B-фрагментом без 50 C-концевых аминокислотных остатков и имеет следующую первичную структуру, приведенную на фиг. 3.

Фрагмент CD4 с Val 14 по Glu 152 представляет собой следующую полипептидную последовательность, приведенную на фиг. 4.

Пример 2. Приготовление лизатов клеток.

Ночную культуру клеток E. coli разводят в 100 раз свежей средой LB и выращивают при постоянной аэрации при 30oC. После достижения культурой оптической плотности 0,5 при длине волны 530 нм индуцируют экспрессию гибридных генов добавлением изопропилтиогалактозида до конечной концентрации 0,005% После индуцирующего воздействия культуру выращивают при 30oC и постоянной аэрации в течение 90 мин. Затем клетки собирают центрифугированием при 4000 об/мин в течение 15 мин и лизируют путем обработки ультразвуком в буфере, содержащем 20 мМ трис-HCl pH 8,0, 10 мМ EDTA и 2 мМ фенилметилсульфонилфторида.

Пример 3. Применение гибридного полипептида S304 в качестве ингибитора цитопатического действия вируса иммунодефицита человека в системе in vitro.

Степень ингибирования рекомбинантным рецепторотоксином цитопатического действия вируса иммунодефицита человека 1 типа определяют следующим образом. Сначала определяют токсичность бактериального лизата для линии клеток SEM (T-лимфоциты человека). Для этого суспензию клеток инкубируют на плашке с различными разведениями лизата в среде RPMI-1640. При этом исходная концентрация клеток составляет 0,5 млн./мл. Затем с использованием витального красителя (трепановой синий) проводят подсчет количества погибших и выживших клеток и выбирают такую концентрацию лизата, при которой нет отличия от клеточного контроля (КК клетки без лизата). При концентрации лизата 0,1 - 0,2 мг суммарного белка/мл не было отличий между опытом и КК ни в проценте погибших клеток (1 2%), ни в значении индекса пролиферации (около 2). Для определения антивирусной активности рекомбинантного рецепторотоксина клетки инкубируют в тех же условиях, добавляя бактериальный лизат, содержащий рецепторотоксин, до конечной концентрации 0,15 мг/мл и 1 ЦТД50 ВИЧ1 (цитотоксическая доза вируса для клеток линии SEM). В качестве контроля используют клеточный контроль (КК), вирусный контроль (ВК суспензия клеток SEM с вирусом без лизата) и контроль лизата (КЛ суспензия клеток SEM с вирусом с добавлением лизата бактерий E. coli, не экспрессирующих рекомбинантный рецепторотоксин, в концентрации 0,15 мг/мл). В контрольных лунках (ВК и КЛ) наблюдали более 30% погибших клеток, а в КК и опыте практически все клетки выжили (менее 1% погибших клеток). Таким образом, рекомбинантный рецепторотоксин практически полностью ингибирует цитопатическое действие вируса иммунодефицита человека in vitro.

Класс C12N15/12 гены, кодирующие животные белки

модифицированная дрожжевая двугибридная система для эффективного исследования взаимодействия между белками и их доменами. -  патент 2529356 (27.09.2014)
лейколектины и их применение -  патент 2528860 (20.09.2014)
способ получения пептидов, специфично распознающих определенные типы клеток и предназначенных для терапевтических целей -  патент 2528739 (20.09.2014)
кодон-оптимизированная кднк, кодирующая дисферлин человека, генно-инженерная конструкция, рекомбинантный аденовирус и фармацевтическая композиция для лечения дисферлинопатий -  патент 2527073 (27.08.2014)
антитела против g-белка распираторно-синцитиального вируса (rsv) -  патент 2526517 (20.08.2014)
антитело к epha2 -  патент 2525133 (10.08.2014)
рекомбинантная плазмидная днк pqe30/derf2l, кодирующая белок der f 2l клеща dermatophagoides farinae и штамм бактерий escherechia coli m15/ pqe30/derf2l - продуцент такого белка. -  патент 2522817 (20.07.2014)
регулирование продуктивных признаков у птиц -  патент 2518681 (10.06.2014)
изолированный полипептид и его применение для лечения ракового заболевания или стимуляции иммунной системы, фармацевтическая композиция, содержащая такой полипептид и способ лечения рака. -  патент 2518236 (10.06.2014)
выделенная нуклеиновая кислота, кодирующая флуоресцентный биосенсор, кассета экспрессии, клетка продуцирующая флуоресцентный биосенсор, выделенный флуоресцентный биосенсор -  патент 2515903 (20.05.2014)

Класс C12N15/31 гены, кодирующие микробные белки, например энтеротоксины

рекомбинантная плазмидная днк ppa-oprf-eta, кодирующая синтез рекомбинантного белка oprf-eta pseudomonas aeruginosa, штамм escherichia coli pa-oprf-eta - продуцент рекомбинантного белка oprf-eta pseudomonas aeruginosa и способ получения рекомбинантного белка oprf-eta pseudomonas aeruginosa -  патент 2529359 (27.09.2014)
клостридиальные нейротоксины с измененной персистентностью -  патент 2524429 (27.07.2014)
штамм бактерий escherichia coli - продуцент рекомбинантного флагеллина -  патент 2524133 (27.07.2014)
способ идентификации и оценки количества микробных клеток возбудителя чумы в исследуемых пробах посредством пцр в режиме реального времени -  патент 2518302 (10.06.2014)
биологические материалы и их применение -  патент 2508296 (27.02.2014)
рекомбинантный полипептид а2, селективно связывающий hsa, рекомбинантная днк pa2, кодирующая hsa-связывающую часть полипептида a2, его продуцент - рекомбинантный штамм escherichia coli m15-a2, содержащий рекомбинантную плазмидную днк pqe 32-pa2, обеспечивающую получение полипептида a2 и применение полипептида а2 для диагностики микроальбуминурии и выделения hsa из сыворотки крови -  патент 2506271 (10.02.2014)
полинуклеотидная последовательность, кодирующая сконструированный белок пертактин, вектор, включающий такую последовательность, и вакцинные композиции, содержащие белок пертактина или вектор -  патент 2499046 (20.11.2013)
гибридный инсектицидный белок, молекула нуклеиновой кислоты, кодирующая такой белок, трансгенные растения и их семена, содержащие такой белок, способ получения белка и его применение -  патент 2497830 (10.11.2013)
нейссериальные вакцинные композиции, содержащие комбинацию антигенов -  патент 2494758 (10.10.2013)
конструкции, содержащие составные экспрессионные кассеты, для терапии рака -  патент 2487165 (10.07.2013)
Наверх