способ изготовления мишени для магнетронного распыления из алюминия особой чистоты

Классы МПК:C23C14/35 с использованием магнитного поля, например распыление магнетроном
Автор(ы):, , , , , , , , ,
Патентообладатель(и):Акционерное общество открытого типа "Всероссийский алюминиево-магниевый институт"
Приоритеты:
подача заявки:
1991-04-22
публикация патента:

Изобретение относится к области микроэлектроники и может быть использовано в металлургии в создании термостабилизированных профилей из алюминия особой чистоты. Целью изобретения является повышение эксплуатационных характеристик за счет стабилизации структуры. Поставленная цель достигается тем, что в способе изготовления мишени из алюминия особой чистоты, включающем штамповку, мишень охлаждают, например в жидком азоте с градиентом температуры не менее 100oС/см и отжигают при температуре 450-640oС. Сущность изобретения заключается в том, что в процессе охлаждения мишени с градиентом температуры не менее 100oС/см в структуре мишени вначале происходят неравномерные температурные деформации и возникают натяжения, которые в процессе отжига реализуются, способствуя рекристаллизации и, таким образом, стабилизации структуры. 2 табл.
Рисунок 1

Формула изобретения

Способ изготовления мишени для магнетронного распыления из алюминия особой чистоты, включающий нагрев заготовки и формирование мишени путем штамповки, отличающийся тем, что, с целью повышения эксплуатационных характеристик путем стабилизации структуры мишени, после штамповки мишень охлаждают с градиентом температуры не менее 100oС/см и отжигают в интервале 450 640oС.

Описание изобретения к патенту

Изобретение относится к микроэлектронике, в частности к созданию мишеней для магнетронного распыления улучшенных эксплуатационных характеристик, и может быть использовано в металлургии в создании термостабилизированных профилей из алюминия особой чистоты.

Известно решение по изготовлению мишени для распыления с улучшенными эксплуатационными характеристиками [1] Способ включает осуществление термического удара нагретой предварительно закрепленной на медной подложке мишени охлаждением в жидком азоте, что ведет к растрескиванию мишени, и далее в процессе работы новых трещин не формируется, и процесс напыления стабилен.

Недостатком известного решения является то, что способ применим только для мишеней с напряженной структурой из хрупкого материала, склонного к трещинообразованию.

Более близким по технической сущности является способ изготовления, принятый за прототип, включающий нагрев до температуры 450oС и штамповку [2]

Практика эксплуатации мишеней, изготовленных согласно этому способу, показала, что в процессе работы мишень подвергается нагреву до температуры 450oС в течение 9 ч. При этом происходит собирательная рекристаллизация, сопровождающаяся переориентацией зерен, что приводит к изменению потока алюминия в процессе напыления.

Недостатком способа являются низкие эксплуатационные характеристики за счет нестабильности структуры.

Целью изобретения является повышение эксплуатационных характеристик за счет стабилизации структуры.

Поставленная цель достигается тем, что в способе изготовления мишени из алюминия особой чистоты,включающем нагрев, штамповку, мишень охлаждают, например в жидком азоте с градиентом температуры не менее 100oС/см и отжигают при 450-640oС.

Сущность изобретения заключается в том, что в процессе охлаждения мишени с градиентом температуры не менее 100oС/см с последующим отжигом при 450-640oС в структуре мишени вначале происходят неравномерные температурные деформации, и возникают напряжения, которые в процессе обжига реализуются, способствуя рекристаллизации и стабилизации структуры.

Поиск по источникам научно-технической и патентной литературы показал, что такая совокупность признаков неизвестна, таким образом, заявленное решение отвечает критерию "существенные отличия".

Уровень напряжений в мишени пропорционален градиенту температур, который изменяется во времени и в зависимости от продолжительности охлаждения определяется зависимостью [3]

способ изготовления мишени для магнетронного распыления из   алюминия особой чистоты, патент № 2091501

где G вес изделия, кг;

F поверхность, м2;

tмн и tмк начальная и конечная температура металла, oС;

tвс температура внешней среды, oС;

С средняя теплоемкость металла, ккал/кгспособ изготовления мишени для магнетронного распыления из   алюминия особой чистоты, патент № 2091501град;

способ изготовления мишени для магнетронного распыления из   алюминия особой чистоты, патент № 2091501 коэффициент теплоотдачи, ккал/м2способ изготовления мишени для магнетронного распыления из   алюминия особой чистоты, патент № 2091501чспособ изготовления мишени для магнетронного распыления из   алюминия особой чистоты, патент № 2091501град.

Верхний предел температуры отжига должен быть на 15-20oС ниже температуры плавления в связи с возможной потерей геометрии при отжиге. Нижний предел 450oС является началом интенсивной собирательной кристаллизации.

Пример. Мишень, изготовленная горячей штамповкой, размером 1х1х1 см охлаждали окунанием в жидком азоте в течение 2 мин.

Изменение градиента температур между поверхностью мишени и ее центром в зависимости от продолжительности охлаждения в жидком азоте, а также расчетный уровень напряжений, возникающих при этом в мишени, представлены в табл.1.

Как видно из данных, представленных в табл.1, наибольший градиент температур и, соответственно, наиболее высокий уровень напряжений имеет место при выдержке способ изготовления мишени для магнетронного распыления из   алюминия особой чистоты, патент № 2091501 0,5 мин. Однако на практике затруднительно обеспечить столь кратковременную обработку, поэтому выбрано охлаждение продолжительностью 1-4 мин. При охлаждении длительностью более 4 мин температура мишени будет выравниваться, градиент температуры понижаться, достигнет величины менее 100oС/см и уровень напряжений будет недостаточным, чтобы способствовать рекристаллизации в процессе дальнейшего отжига.

Влияние режима отжига на рекристаллизацию охлажденной в жидком азоте мишени оценивали по изменению размера зерна (табл.2).

Таким образом, предлагаемый способ изготовление мишени, позволил получить термостабилизированную структуру, что обеспечивает постоянство структурных характеристик в процессе магнетронного распыления, и, таким образом, повысить стабильность эксплуатационных характеристик.

ЛИТЕРАТУРА

1. Япония, заявка N 62-278261, МКИ С 23 С 14/34.

2. Отчет по теме: разработать опытно-промышленную технологию изготовления "мишеней" для установки Магна 2Н из лантаноидосодержащих сплавов на основе алюминия особой чистоты (АОЧ) марки А5М тема 5-89-377, N г.регистр. 01900060696, Ленинград, 1990.

3. Шличков А.А. Справочник термиста. М. 1961, с.392.

Класс C23C14/35 с использованием магнитного поля, например распыление магнетроном

магнитный блок распылительной системы -  патент 2528536 (20.09.2014)
способ защиты поверхности алюминия от коррозии -  патент 2522874 (20.07.2014)
устройство для ионно-плазменного нанесения многокомпонентных пленок в вакууме -  патент 2522506 (20.07.2014)
терморегулирующий материал, способ его изготовления и способ его крепления к поверхности корпуса космического объекта -  патент 2515826 (20.05.2014)
способ транспортировки с фильтрованием от макрочастиц вакуумно-дуговой катодной плазмы и устройство для его осуществления -  патент 2507305 (20.02.2014)
способ получения электропроводящего текстильного материала -  патент 2505256 (27.01.2014)
распылительный узел плоского магнетрона -  патент 2500834 (10.12.2013)
способ получения прозрачного проводящего покрытия из оксида металла путем импульсного высокоионизирующего магнетронного распыления -  патент 2499079 (20.11.2013)
способ вакуумно-плазменного осаждения покрытия на режущую пластину из твердосплавного материала -  патент 2494173 (27.09.2013)
способ получения градиентного каталитического покрытия -  патент 2490372 (20.08.2013)
Наверх