способ переработки отходов материалов на основе алюминиевой фольги

Классы МПК:C22B7/00 Переработка сырья, кроме руды, например скрапа, с целью получения цветных металлов или их соединений
Автор(ы):, , ,
Патентообладатель(и):Акционерное общество "Фольгопрокатный завод"
Приоритеты:
подача заявки:
1993-06-29
публикация патента:

Изобретение относится к области химической технологии и может быть использовано преимущественно для получения металлического алюминия из отходов кашированной алюминиевой фольги. Отходы алюминиевой фольги, например, в виде ленты измельчают резанием, загружают в канал печи, устанавливают температуру при термообработке в диапазоне 500 - 650oC, выдерживают при этой температуре 10 - 15 мин в бескислородной среде (инертные, топочные газы) для карбонизации органической составляющей материала, после чего карбонизат отделяют от фольги, например, стряхиванием, получая целевой продукт - металлический алюминий. Карбонизация может вестись также в расплавах металлов и солей. При температурах ниже 500oC карбонизация замедляется, что снижает выход целевого продукта. Способ позволяет полностью извлечь алюминий из отходов.

Формула изобретения

Способ переработки отходов на основе алюминиевой фольги, включающий их измельчение, термообработку и отделение металлического алюминия, отличающийся тем, что термообработку осуществляют в бескислородной среде при 500 - 650oС в течение 10 15 мин с получением углеродсодержащей массы и металлического алюминия.

Описание изобретения к патенту

Изобретение относится к области химической технологии и может быть использовано преимущественно для получения металлического алюминия из отходов кашированной алюминиевой фольги.

Получение рекуперативного алюминия стало насущной задачей в связи с тем, что при его извлечении из отходов экономится до 90 95% электроэнергии, необходимой для получения того же количества первичного алюминия, а также отпадает необходимость в добыче и переработке исходного сырья, например бокситов. Кроме того, переработкой промышленных отходов решаются многие экологические проблемы. Необходимость создания способов переработки отходов материалов на основе алюминиевой фольги связана с тем, что переплав, например, пакетированных отходов кашированной и ламинированной фольги для извлечения металла приводит к загазованности атмосферы в результате интенсивного выделения токсичных дымовых газов. Бумага или пластик, склеенные с алюминиевой фольгой, сгорая в плавильных печах, сжигают фольгу. Отделение фольги от каширующих материалов с помощью специальных составов дорогостоящий и трудоемкий процесс.

Известен способ переработки отходов кабельной изоляции, представляющей собой алюминиевую фольгу, соединенную с полиэтиленовой пленкой, путем нагрева и отделения полиэтилена от фольги при выходе материала из нагревателя [1] Известный способ отличается трудоемкостью и высоким энергопотреблением.

Известен способ переработки отходов фольги, кашированной различными материалами, путем механического воздействия на материал измельчения до такой степени, что фольга отделяется от каширующего материала, и последующего разделения смеси тонкодисперсных частиц с использованием роторной вихревой мельницы [2] Известный способ позволяет после помола выделить металлический Al в виде тонкодисперсного порошка. Недостатком этого процесса является большая энергоемкость процесса, необходимость контроля взрывобезопасности.

Известный способ может быть принят за прототип, поскольку совпадает с заявляемым способом по существенному признаку измельчению материала при механическом воздействии на него.

Задача, решаемая изобретением, состоит в упрощении способа получения металлического алюминия путем переработки отходов фольги.

Поставленная задача решается тем, что в известном способе переработки отходов материалов на основе алюминиевой фольги, предусматривающем измельчение материала и отделение металлического алюминия, в соответствии с изобретением, измельченный материал подвергают термообработке и карбонизируют в бескислородной среде при температуре 500 650oC в течение 10 15 мин, после чего отделяют карбонизат от целевого продукта.

Сущность изобретения состоит в том, что при термообработке исходного материала в режиме, установленном авторами экспериментально, удается получить весь содержащийся в фольге Al и дополнительно, как побочный продукт, карбонизат органического материала, пригодный для дальнейшего использования. При этом при температурах ниже 500oC карбонизация материала замедляется, т. к. не уходят летучие органические вещества, имеющие температуру возгонки в указанном диапазоне, а при температурах, превышающих 650oC, идет активизация карбонизата, растет доля фольги, вступающей, однако, для получения ценных потребительских свойств у карбонизата (побочного продукта), его нужно активизировать в присутствии кислорода, а это приводит к снижению выхода металлического алюминия, поскольку растет доля алюминиевой фольги, вступающей в реакцию окисления. Время термообработки установлено экспериментально из условия полной карбонизации органического материала. Для получения целевого продукта необходима бескислородная среда (инертные, топочные газы, расплавы солей и металлов хлористый цинк, олово и т.п.), которая исключает окисление алюминия, а также отжиг органической составляющей.

Способ осуществляется следующим образом. Отходы кашированной алюминиевой фольги измельчают на полоски шириной около 1,2 1,5 мм. Полоски в виде рыхлой массы загружают в канал печи или другого устройства (ванна с расплавом и т. п. ), перемещают через зону нагрева, в которой поддерживают рабочую температуру 500 650oC, общая длительность пребывания материала в печи 10 15 мин. При указанной температуре из материала выделяют летучие органические вещества с температурой возгонки в рабочем диапазоне, газы отделяют, охлаждают, летучие конденсируются и поступают на дальнейшую переработку. Топочные газы после отделения летучих поступают назад в канал печи, а избыток сбрасывается, т.к. необходимо обеспечить небольшой подпор давления внутри канала печи. После термообработки и карбонизации органической составляющей металлический алюминий отделяется в виде полосок, пригодных для дальнейшей переработки. Оксиды алюминия не образуются, восстановительная атмосфера существует в канале печи за счет образования водорода или оксида углерода при наличии исходной влажности или других причин. Металлический алюминий накапливается в бункере, а затем прессуется, например, в гранулы и поступает на переплавку.

Примеры конкретного выполнения.

1. Получали металлический алюминий из исходного материала кашированной алюминиевой фольги, содержавшей 52 мас. алюминия, остальное бумага, влажность материала 10% Материал измельчили в полоски шириной 1,5 мм и длиной 4 5 мм (по ширине ленты фольги) и загрузили в печь. Нагрев материала производили со скоростью 5o/мин, по достижении 500oC нагрев прекратили и выдерживали материал при этой температуре в течение 15 мин, одновременно осуществляя его перемещение к концу печи и стряхивая карбонизат. После окончания термообработки выгрузили целевой продукт в виде полосок фольги. Выход целевого продукта составил 52 мас. выход карбонизата 16 мас. убыль массы произошел за счет угара карбонизата, испарения воды и летучих. Таким образом, получено 100% алюминия, содержащегося в отходах фольги.

2. Получали металлический алюминий, как в примере 1, проводя термообработку и карбонизацию при температуре 580oC. Выход целевого продукта и карбонизата соответствует результатам примера 1, получено 100% алюминия, содержащегося в отходах фольги.

3. Получали металлический алюминий, как в примере 1, проводя термообработку и карбонизацию при температуре 650oC. Выход целевого продукта и карбонизата соответствует результатам примера 1, получено 100% алюминия, содержащегося в отходах фольги.

Полученный в примерах карбонизат представлял собой черный порошок различного гранулометрического состава. Учитывая возможность полезного использования карбонизата, например, в качестве сорбента, была исследована его сорбционная емкость для образцов, полученных при разных температурах карбонизации. Так, при температуре карбонизации 500oC объем сорбционного пространства карбонизата (пример 1) составляет по воде 0,05 см3/г и по бензолу 0,90 см3/г. Такими же показателями характеризуется образец карбонизата примера 3, полученный при температуре 650oC, однако меньше, чем у карбонизата, полученного при более высокой температуре и при его активации.

Приведенные примеры показывают, что по предлагаемой технологии переработки отходов материалов на основе алюминиевой фольги можно извлекать полностью алюминий и дополнительно получать карбонизат для последующей переработки в полезный продукт.

Источники информации

1. JP, N 56-157317, B 22 C 29/00. Утилизация отходов кабельной изоляции. Публ. 04.12.81.

2. Рекламный проспект "Ультра Ротор" фирмы "Altenburger Machinen Jasckerieg G-mbH", международная выставка "Химия-87".

Класс C22B7/00 Переработка сырья, кроме руды, например скрапа, с целью получения цветных металлов или их соединений

отражательная печь для переплава алюминиевого лома -  патент 2529348 (27.09.2014)
способ извлечения молибдена из техногенных минеральных образований -  патент 2529142 (27.09.2014)
способ комплексной переработки красных шламов -  патент 2528918 (20.09.2014)
способ переработки медно-ванадиевых отходов процесса очистки тетрахлорида титана -  патент 2528610 (20.09.2014)
способ извлечения металлов из потока, обогащенного углеводородами и углеродистыми остатками -  патент 2528290 (10.09.2014)
способ извлечения рения и платиновых металлов из отработанных катализаторов на носителях из оксида алюминия -  патент 2525022 (10.08.2014)
способ переработки твердых бытовых и промышленных отходов и установка для его осуществления -  патент 2523202 (20.07.2014)
способ переработки титановых шлаков -  патент 2522876 (20.07.2014)
способ утилизации твердых ртутьсодержащих отходов и устройство для его осуществления -  патент 2522676 (20.07.2014)
двух ванная отражательная печь с копильником для переплава алюминиевого лома -  патент 2522283 (10.07.2014)
Наверх