конденсатор

Классы МПК:H01G4/06 твердые диэлектрики
Автор(ы):, ,
Патентообладатель(и):Товарищество с ограниченной ответственностью - Инженерная фирма "Элли"
Приоритеты:
подача заявки:
1993-06-16
публикация патента:

Использование: в электронной технике при создании дискретного емкостного элемента в ВЧ и СВЧ аппаратуре. Сущность изобретения: содержит емкостной элемент с двумя электродами и с пленочным диэлектриком между ними. В электродах и диэлектрике выполнены окна определенных размеров и расположения, что позволяет создать миниатюрные пленочные конденсаторы в дискретном исполнении. Емкостной элемент может содержать дополнительно слой полупроводникового материала, а также при выполнении его из двух емкостных элементов их выводы соединяются. 2 з.п.ф-лы, 4 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4

Формула изобретения

1. Конденсатор, содержащий по меньшей мере один емкостной элемент, выполненный в виде соосно расположенных верхнего и нижнего металлических электродов и размещенной между ними диэлектрической пленки, равномерно выступающей по периметру за контур нижнего электрода, отличающийся тем, что в верхнем электроде и диэлектрической пленке соосно той же оси выполнены окна, причем размер окна в верхнем электроде превышает размер окна в диэлектрической пленке, величина выступа диэлектрической пленки над нижним электродом и в окне верхнего электрода по меньшей мере в десять раз превышает толщину диэлектрической пленки, а верхний электрод выполнен с выступом в виде балочного вывода.

2. Конденсатор по п.1, отличающийся тем, что емкостной элемент дополнительно содержит по меньшей мере один слой из полупроводникового материала, повторяющий размеры нижнего электрода и размещенный между ним и диэлектрической пленкой, при этом в дополнительном слое выполнено окно, совпадающее с окном в диэлектрической пленке.

3. Конденсатор по п.1, отличающийся тем, что при выполнении его из двух емкостных элементов их балочные выводы объединены с образованием мостика.

Описание изобретения к патенту

Изобретение относится к области электронной техники и может быть использовано при создании сосредоточенного емкостного элемента в дискретном исполнении для работы в составе ВЧ и СВЧ аппаратуры.

Известен пленочный конденсатор, расположенный на жесткой изолирующей подложке и содержащий нижний электрод, диэлектрическую пленку и верхний электрод, выполненный по гибридной технологии [1]

Недостатком данной конструкции является то, что конденсатор входит в состав гибридной микросхемы (например, размещается в разрыве микрополосковой линии), выполненной на единой подложке и не является самостоятельным (дискретным) конструктивным элементом. Кроме того, диэлектрическая пленка в процессе получения данной конструкции наносится на нижний металлический электрод, что снижает ее электрические параметры (добротность и электрическую прочность)

Известен конденсатор, содержащий электроды и диэлектрическую пленку, расположенную между ними, причем одним из электродов является низкоомная полупроводниковая подложка [2] Данный конденсатор является дискретным элементом, который с помощью сборочных операций может быть установлен в микросборку. Недостатком является то, что сравнительно толстый (несколько сотен микрон) полупроводниковый электрод имеет удельное сопротивление выше, чем металлический и на сверхвысоких частотах будет ухудшать добротность конденсатора. Кроме того, верхний рабочий электрод конденсатора одновременно является и монтажным. В процессе монтажа на таком электроде соединительного проводника нередко происходит ухудшение свойств диэлектрической пленки под электродом, что ухудшает параметры конденсатора.

Наиболее близким техническим решением является конденсатор, содержащий металлические электроды, расположенные друг над другом и разделенные диэлектриком [3] Конструкция также является дискретным емкостным элементом.

Недостатком данной конструкции является то, что непосредственно на электроде осуществляется монтаж соединительных проводников, что нередко приводит к ухудшению электрических и эксплуатационных характеристик конденсатора. Кроме того, эти проводники дают дополнительную индуктивность, которая, особенно при малых значениях емкостей, вызывает нежелательные резонансные частоты, что ограничивает частотный рабочий диапазон конденсатора.

В предлагаемой конструкции конденсатора, содержащего, по меньшей мере, один емкостной элемент, выполнены соосно расположенные верхний и нижний круглые или многоугольные металлические электроды. Между электродами размещена диэлектрическая пленка, равномерно выступающая по периметру за контур нижнего электрода. В верхнем электроде и диэлектрической пленке соосно той же оси выполнены окна. При этом, размер окна в верхнем электроде превышает размер окна в диэлектрической пленке. Величина выступа диэлектрической пленке над нижним электродом и в окне верхнего электрода, по меньшей мере, в десять раз превышает толщину диэлектрической пленки. Кроме того, верхний электрод выполнен с выступом в виде балочного вывода.

Для увеличения механической прочности устройства, а также обеспечения возможности изменения емкости напряжением на электродах конденсатор может дополнительно содержать, по меньшей мере, один слой полупроводникового материала, повторяющий размеры нижнего электрода и размещенный между ним и диэлектрической пленкой. В этом дополнительном слое выполнено окно, совпадающее с окном в диэлектрической пленке.

При малых значениях емкости предполагаемая конструкция конденсатора может содержать два емкостных элемента, объединенных балочными выводами таким образом, что эти выводы образуют мостик.

На фиг. 1-3 проиллюстрированы варианты конструкции.

Конденсатор, представляющий из себя емкостной элемент (фиг. 1), содержит верхний 1 и нижний 2 металлические электроды, выполненные соосно, а также диэлектрическую пленку 3 между электродами. В верхнем электроде и диэлектрической пленке имеются окна 4 и 5, выполненные соосно той же оси, что и у металлических электродов. Окно 5 вскрыто до металлического электрода 2. Верхний электрод 1 имеет выступ в виде балочного вывода 6. Размер окна 4 в верхнем электроде 1 превышает размер окна 5 в диэлектрической пленке 3. Величина выступов 7 диэлектрической пленки 3 над электродом 2 и в окне 4 электрода 1 превышает толщину диэлектрической пленки 3. Благодаря выступам увеличивается кратчайшее расстояние между электродами конденсатора на их внешних границах. Это обеспечивает надежную изоляцию "слабых" мест конденсатора, что не допускает снижение добротности диэлектрика и рабочего напряжения конденсатора за счет краевых эффектов. Для качественной изоляции величина выступов должна, по меньшей мере, на порядок превышать толщину диэлектрической пленки. Верхний предел превышения величины выступов определяется особенностями использования конденсатора в конкретной аппаратуре и находится в пределах стократной толщины диэлектрической пленки.

Емкость конденсатора обеспечивается взаимным перекрытием электродов. Активная площадь Sсар будет определяться разностью площадей нижнего электрода Sн и отверстия в верхнем электроде Sво:

Scap=Sн-Sво.

Величина емкости конденсатора C определяется выражением:

конденсатор, патент № 2087972

где конденсатор, патент № 2087972 относительная диэлектрическая проницаемость пленки;

eo диэлектрическая проницаемость вакуума;

t толщина диэлектрика.

Предлагаемая конструкция позволяет использовать в качестве базовой структуру диэлектрик-полупроводник, что обеспечивает высокие электрические характеристики конденсатора, поскольку полупроводниковая интегральная технология дает самые качественные однослойные и многослойные диэлектрические пленки.

Для повышения механической прочности конденсатора, а также обеспечения равномерности стравливания полупроводниковой подложки, часть полупроводникового слоя в процессе травления может быть оставлена. Если оставшийся полупроводниковый слой (слои) является низкоомным, емкость конденсатора не зависит от напряжения на электродах, а малая толщина оставшегося слоя (5-10 мкм) обеспечивает низкие потери в нижем электроде. Для повышения однородности оставленного полупроводникового слоя, этот полупроводниковый слой может быть выполнен в виде эпитаксиального слоя на полупроводниковой подложке с отличающейся концентрацией легирующей примеси и (или) типом проводимости. В этом случае этот слой может выполнять функции "стоп"-слоя при травлении.

Кроме того, если непосредственно под диэлектриком помещается слой высокоомного полупроводника, емкость конденсатора может изменяться приложенным к электродам напряжением смещения.

Предлагаемая по п. 2 конструкция конденсатора будет иметь вид, представленный на фиг. 2. Внешняя конфигурация полупроводникового слоя 8 повторяет размеры нижнего электрода 2. Также в полупроводниковом слое формируется окно, являющееся продолжением окна 5 в диэлектрике 3 до нижнего электрода 2. В данной конструкции полупроводниковый слой является составной частью нижнего электрода. Остальные обозначения фиг. 2 соответствуют названиям элементов конструкции фиг. 1.

Практически толщина диэлектрической пленки составляет 0,5-1 мкм. При уменьшении емкости конденсатора площадь перекрытия электродов Scap уменьшается, при величине емкости порядка 1 пФ и менее минимальной линейный размер взаимного перекрытия электродов составляет для данных значений толщин диэлектрической пленки несколько десятков микрон, что снижает механическую прочность конструкции. Этот недостаток устраняется конструкцией, представленной на фиг. 3. Здесь объединяются балочные выводы образуется мостик 9, соединяющий верхние электроды этих элементов. Остальные обозначения фиг. 3 соответствуют названиям элементов фиг. 1. Электрическая схема данной конструкции представляет собой два последовательно соединенных конденсатора. Для получения низкого значения емкости каждый из этих элементов имеет емкость, в два раза превышающую результирующую, следовательно, площади перекрытия электродов также в два раза увеличивается, что повышает механическую прочность конструкции. Кроме того, возрастает суммарное толщина диэлектрика, что обеспечивает повышение значения рабочего напряжения. Как и по п. 2 формулы, между нижним электродом и диэлектрической пленкой может находится слой низкоомного полупроводника.

При проведении сборочных операций монтажными электродами в конструкции по пп. 1 и 2 являются балочный вывод верхнего электрода и часть нижнего электрода, попадающая в окно в диэлектрической пленке. По п. 3 монтажными электродами являются часть нижних электродов, попадающих в окна обеих емкостных элементов. Пример монтажа с применением сварки представлен на фиг. 4 а, б. Здесь 1 подложка, 2 микрополосковая линия, 3 места приварки. В процессе установки конденсатора в схему рабочие электроды конденсатора подвергаются значительно меньшим механическим воздействием по сравнению с конструкциями аналогов и прототипа без балочных выводов. Кроме того, по сравнению с прототипом в предлагаемой конструкции конденсатора длина монтажных электродов, а значит и индуктивность, минимизирована, поэтому резонансная частота максимально сдвинута в область более высоких частот.

Практическая реализация предлагаемого решения осуществляется следующим образом.

1. На исходной структуре диэлектрик-полупроводник со стороны диэлектрика выращивается гальваническим способом слой металла, например, золота.

2. Полупроводниковый слой или его часть стравливается.

3. С обратной стороны, также как и по п.1, выращивается слой металла.

4. На нижнем и верхнем слоях металла формируется методами фотолитографии электроды и конфигурация диэлектрической пленки в соответствии с предлагаемыми вариантами конструкций.

Класс H01G4/06 твердые диэлектрики

способ получения состава для пропитки многократного применения и способ изготовления слюдобумажных конденсаторов -  патент 2455719 (10.07.2012)
многослойный нанокомпозит для конденсаторов и способ его изготовления -  патент 2432634 (27.10.2011)
плоский многослойный конденсатор -  патент 2383077 (27.02.2010)
плоский шестислойный конденсатор -  патент 2383076 (27.02.2010)
плоский однослойный конденсатор -  патент 2373594 (20.11.2009)
плоский электрический конденсатор -  патент 2335820 (10.10.2008)
способ изготовления слюдобумажных конденсаторов -  патент 2293391 (10.02.2007)
способ изготовления слюдобумажных конденсаторов -  патент 2107352 (20.03.1998)
слюдяной конденсатор и способ его изготовления -  патент 2061270 (27.05.1996)
пленочный конденсатор -  патент 2046429 (20.10.1995)
Наверх