способ получения 1,2,4-триазолона-5

Классы МПК:C07D249/12 атомы кислорода или серы
Автор(ы):,
Патентообладатель(и):Санкт-Петербургский государственный университет технологии и дизайна
Приоритеты:
подача заявки:
1992-11-25
публикация патента:

Изобретение относится к области синтеза гетероциклических соединений. 1,2,4-Триазолон-5 является исходным соединением для производства в промышленном масштабе высокоэффективного активатора низкотемпературного перекисного отбеливания для текстильных материалов. 1,2,4-триазолон-5 получают взаимодействием семикарбазида с водным раствором смеси муравьиной, уксусной, пропионовой и масляной кислот, являющимся побочным продуктом производства синтетических жирных кислот методом окисления парафинов, и соляной кислоты при температуре кипения реакционной смеси в течение 2-3 ч с последующей отгонкой из реакционной массы непрореагировавшего количества кислот и воды. Причем соотношение семикарбазид : смесь кислот : соляная кислота составляет 1 : (2,5 - 3,0) : (0,37 - 0,75). 1 табл.
Рисунок 1

Формула изобретения

Способ получения 1,2,4-триазолона-5 путем взаимодействия семикарбазида, соляной кислоты и циклизующего агента, отличающийся тем, что в качестве циклизующего агента используют водный раствор смеси муравьиной, уксусной, пропионовой и масляной кислот, являющейся побочным продуктом производства синтетических жирных кислот методом окисления парафинов, при соотношении семикарбазид смесь кислот соляная кислота 1 (2,5 3) (0,37 0,75) и процесс ведут в течение 2 3 ч при температуре кипения реакционной смеси с последующей отгонкой воды и непрореагировавших кислот.

Описание изобретения к патенту

Изобретение относится к области синтеза гетероциклических соединений, которые могут быть использованы для получения активаторов низкотемпературного перекисного беления текстильных материалов.

1,2,4-Триазолон-5 является исходным соединением для производства в промышленном масштабе высокоэффективного активатора низкотемпературного перекисного отбеливания текстильных материалов [1] а также используется для синтезов различных гетероциклических соединений [2]

Известно несколько способов синтеза 1,2,4-триазолона-5, например, синтез осуществляют реакцией взаимодействия триформиламинометана с хлоргидратом семикарбазида [3] N-карбэтоксиамидинов с гидразингидратом [4] термическим декарбоксилированием 1,2,4-триазолонмид-3-карбоновой кислоты [5] нагреванием семикарбазида с триэтиловым эфиром ортомуравьиной кислоты [6] взаимодействием муравьиной кислоты и солянокислого семикарбазида [2]

Недостатком этих способов является их неэкологичность, так как они связаны с необходимостью использования больших количеств ядовитых и вредных веществ, применением высоких температур, способствующих образованию вредных побочных продуктов, сопровождаются большим количеством отходов, загрязняющих окружающую среду. Кроме того, известные способы трудоемки, так как являются многостадийными и включают большое количество технологических операций.

Наиболее близким техническим решением, выбранным в качестве прототипа [7] является способ получения 1,2,4-триазолона-5 в одну стадию реакцией циклизации семикарбазида со смесью муравьиной и соляной кислот, причем семикарбазид для этой цели предварительно получается по известной методике [8] из гидразингидрата и мочевины и используется в свободном виде без превращения в гидрохлорид.

Схема синтеза 1,2,4-триазолона-5 из семикарбазида:

способ получения 1,2,4-триазолона-5, патент № 2085556

Выход продукта по способу прототипа составляет 56 57% Недостатком этого способа является то, что он предусматривает использование дефицитной и дорогостоящей концентрированной муравьиной кислоты.

Техническим результатом данного изобретения является сохранение стабильного выхода и высокого качества продукта при значительном снижении его стоимости и улучшении технологичности процесса за счет замены дефицитной и дорогостоящей муравьиной кислоты, используемой в прототипе в качестве циклизующего агента, на водный раствор смеси органических кислот (муравьиная, уксусная, пропионовая, масляная), которая образуется в качестве побочного продукта производства синтетических жирных кислот методом окисления парафинов (ТУ 38.107121-84).

Согласно ТУ 38.107121-84 суммарное содержание жирных кислот в такой смеси должно быть не менее 65% в том числе пропионовой кислоты не более 5% масляно не более 5% Смесь представляет собой прозрачный бесцветный или слегка желтый раствор с запахом уксусной кислоты. Такая смесь была получена нами в готовом виде с Волгодонского химкомбината и содержала 30-30% муравьиной кислоты, 5-25% уксусной кислоты, 3-5% ропионовой кислоты, 2-5% масляной кислоты (остальное вода).

Указанный технический результат достигается тем, что 1,2,4-триазолон-5 получают взаимодействием семикарбазида со смесью органических кислот и соляной кислоты, взятых в такой пропорции, чтобы соотношение HCl и органических кислот составляло (0,3 0,5):2, соотношение семикарбазида и смеси кислот 1: (2,5 3,0). Процесс ведут в течение 2-3 ч при температуре кипения реакционной смеси с последующей отгонкой воды и непрореагировавших кислот. В этих условиях соотношение семикарбазида и муравьиной кислоты равно 1:(1,25 1,50), а общее соотношение семикарбазид: смесь кислот соляная кислота составляет 1:(2,5-3,0) (0,37 0,75).

Сопоставительный анализ с прототипом позволяет сделать вывод, что заявляемый способ получения 1,2,4-триазолона-5 отличается от известного тем, что для синтеза используется не дефицитная дорогостоящая концентрированная муравьиная кислота, а кислотная смесь, содержащая не более 35% этой кислоты.

Применение муравьиной кислоты такой низкой концентрации для синтеза по способу прототипа не приводит к получению 1,2,4-триазолона-5. Выход продукта по способу прототипа в значительной степени зависит от концентрации муравьиной кислоты. Достаточно стабильный выход наблюдается лишь при использовании концентрированной кислоты. При использовании в качестве циклизующего агента смеси кислот выход 1,2,4-триазолона-5 остается стабильным и составляет 55-55 при сохранении качества (опыт N 1-6).

Максимальный выход продукта наблюдается при соотношении семикарбазида и муравьиной кислоты 1:(1,25 1,50). Увеличение избытка муравьиной кислоты за счет увеличения объема смеси кислот не дает существенного повышения выхода (опыт N 7).

Для обеспечения полноты выделения продукта после окончания синтеза из реакционной смеси проводят отгонку воды и непрореагировавших кислот, в противном случае выход продукта, ввиду его хорошей растворимости в реакционной смеси, резко снижается (опыт N 8).

Предлагаемый способ получения 1,2,4-триазолона-5 дает возможность использовать в качестве циклизующего агента не дорогостоящую чистую муравьиную кислоту, а смесь органических кислот, образующихся в качестве побочного продукта в производстве синтетических жирных кислот методом окисления парафинов. В результате достигается значительное снижение себестоимости продукта, появляется возможность утилизации отходов производства синтетических жирных кислот, а также повышается технологичность производства за счет более низкой коррозионной активности смеси органических кислот по сравнению с чистой муравьиной кислотой.

Утилизация отходов производства синтетических жирных кислот является в настоящее время весьма актуальной проблемой в связи с возрастанием требований по экологии.

В литературе описано несколько предложений по решению этой проблемы. Предложено, например, использовать такие отходы в качестве добавки-интенсификатора помола шлакопортландцемента [9] в качестве добавки в вяжущие составы с целью увеличения прочности [10] в качестве ингибитора гидратообразования природных и попутных газов [11] для получения формиата марганца при разложении марганцевой руды [12] Применение отходов производства синтетических жирных кислот, аналогичное предлагаемому, в литературе не описано.

Предлагаемый способ получения 1,2,4-триазолона-5 реализуется следующим образом.

Пример 1. В реактор емкостью 0,25 л, снабженный мешалкой со скоростью вращения 100 мин-1, обратным холодильником, соединенным с системой поглощения, термометром, помещают 0,25 моль семикарбазида. При перемешивании добавляют раствор 0,125 моль соляной кислоты в рассчитанном количестве смеси органических кислот, полученной непосредственно с Волгодонского химкомбината и являющейся побочным продуктом производства синтетических жирных кислот методом окисления парафинов. Количество добавляемой смеси органических кислот должно быть таким, чтобы содержание в ней муравьиной кислоты составляло 0,312 моль.

Пример расчета количества смеси, содержащей: 34,04% воды, 35,25% муравьиной кислоты, 22,70% уксусной кислоты, 4,97% пропионовой кислоты, 3,07% масляной кислоты.

В 1 кг (927,8 мл) такой смеси содержится 352,6 г (7,66 моль) муравьиной кислоты. Простой арифметический расчет показывает, что 0,312 моль муравьиной кислоты содержится в 38 мл смеси кислот. Соляную кислоту растворяют в смеси органических кислот при комнатной температуре непосредственно перед синтезом.

Реакционную массу нагревают за 45-60 мин до кипения (102 способ получения 1,2,4-триазолона-5, патент № 2085556 2o), выдерживают при кипении в течение 2 ч, затем обратный холодильник меняют на нисходящий и проводят отгонку воды и непрореагировавших органических кислот. Остаток охлаждают до комнатной температуры, при этом выпадает белый кристаллический осадок конечного продукта (1,2,4-триазолон-5). После фильтрации и сушки качество продукта контролируют по температуре плавления. Согласно литературным данным [2] Т.пл. чистого 1,2,4-триазолона-5 равна 236-238oC.

Примеры конкретного осуществления способа получения 1,2,4-триазолона-5 сведены в таблицу.

Источники информации

1. SU А.с. 1565926, кл. D 06 L 3/02, 1990 г.

2. Чипен Г.И. Бокалдер Р.П. Гринштейн В.Я. Химия гетероциклических соединений. 1966, N 1, с. 110

3. Dobosh M. Ann, UMCS, 1979, АА 34, р.163

4. Кайманакова С.И. Кулешова Е.Ф. Соловьева Н.П. Граник В.Г. Химия гетероциклических соединений. 1982, N 11, с. 1553.

5. Manchot H. Ber. 1898, Bd 31, c. 2447

6. SU A.c. 1002290, кл. C 07 D 249/12, 1983 г.

7. Базанова Г. В. Маглыш Г.Н. Стоцкий А.А. Потребители и производители органических реактивов. Семинар-совещание-5. Тезисы докладов. 24-29 апр. 1991 г. Дилижан, Армения.

8. Curtius Th. Heidenreich K. Ber. 1894, Bd 27, N 1, S. 55-58.

9. Червонная М.Е. Комай А.Ц. Учватов Ф.Ф. Строительные материалы и конструкции, 1985, с. 21-22.

10. Авторское свидетельство СССР 1102782, кл. C 04 B 11/06. 1984 г.

11. Авторское свидетельство СССР 718441 кл. C 07 C 53/00, опубл. 28.02.80.

12. Винокурова И.К. Калачева В.Г. Диаров М.Д. и др. Хим. промышленность, 1987, N 6, с. 60.

Класс C07D249/12 атомы кислорода или серы

соединения, оказывающие возбуждающее действие на рецептор активатора пролиферации пероксисом подтипа б, способ получения и применение указанных соединений -  патент 2522450 (10.07.2014)
замещенные арилимидазолоны и -триазолоны в качестве ингибиторов рецепторов вазопрессина -  патент 2460724 (10.09.2012)
производное триазолона -  патент 2430095 (27.09.2011)
производные триазола -  патент 2416605 (20.04.2011)
инсектицид, акарицид и нематоцид, содержащие в качестве активного компонента производное 3-триазолилфенилсульфида -  патент 2394819 (20.07.2010)
производные бензилтриазолона в качестве ненуклеозидных ингибиторов обратной транскриптазы -  патент 2394028 (10.07.2010)
производное триазола -  патент 2383536 (10.03.2010)
способ получения 4,5-дизамещенных 2,4-дигидро-3h-1,2,4-триазол-3-тионов -  патент 2372338 (10.11.2009)
лизиний 3-метил-1,2,4-триазолил-5-тиоацетат, проявляющий нейропротективное, ноотропное, кардиопротективное, эндотелиотропное, противоишемическое, антиоксидантное, противовоспалительное и противогипоксическое действие, обладающий низкой токсичностью -  патент 2370492 (20.10.2009)
5-сульфанил-4н-1,2,4-триазольные производные и их применение в качестве лекарственного препарата -  патент 2367655 (20.09.2009)
Наверх