устройство для измерения координат заряженных частиц

Классы МПК:G01T1/18 с помощью разрядных приборов, например счетчиков Гейгера
Автор(ы):
Патентообладатель(и):Институт физики высоких энергий
Приоритеты:
подача заявки:
1992-02-03
публикация патента:

Использование: в газовых детекторах, в ядерной физике и интроскопии. Сущность изобретения: устройство для измерения координат траектории заряженных частиц содержит многоступенчатую управляемую лавинную камеру 1, в которой находятся катодные сигнальные проволоки 2. Катодные проволоки соединены последовательно между собой через линии задержки 3. Первая и последняя линии задержек соединены через усилители 4 со стартовым и стоповым входами время - амплитудного преобразователя 5. 1 ил.
Рисунок 1

Формула изобретения

Устройство для измерения координат траектории заряженных частиц, содержащее многоступенчатую управляемую лавинную камеру, включающую катодные проволоки, отличающееся тем, что катодные проволоки последовательно соединены между собой через линии задержки, причем входной конец первой линии задержки и выходной конец последней линии задержки соединены каждый через усилитель соответственно со стартовым и стоповым входами время-амплитудного преобразователя.

Описание изобретения к патенту

Изобретение относится к устройствам бесфильмового съема информации в газовых детекторах и может быть использовано в ядерной физике и интроскопии.

Известно устройство для измерения координат заряженных частиц [1] состоящее из пропорциональной камеры, катодные проволоки которой соединены между собой линиями задержек с постоянной времени задержки меньшей, чем длительность индуцированного импульса. Индуцированные импульсы, возникающие при прохождении частицы через камеру, частично суммируются на линии задержки так, что центр тяжести суммарного импульса соответствует центру тяжести распределения индуцированных импульсов, а время распространения суммарного сигнала по линии задержки пропорционально координате частицы. Эта координата с помощью время-амплитудного преобразователя, на входа которого попадаются сигналы с противоположных концов линии задержки. Мертвое время такого устройства определяется полной величиной линии задержки. Удельная величена используемых линий задержки лежит в диапазоне 10-100нс/см, т.е. при длине камеры 100 см величина задержки равна 1-10 мкс, и поток частиц через камеру не может превышать 106 частиц/с. В настоящее время в физике исследуются очень редкие процессы, что требует высоких потоков частиц через аппаратуру при больших площадях детекторов. Поэтому описанное устройство не нашло широкого применения в экспериментальной физике.

С другой стороны, имеется устройство [2] которое способно регистрировать координаты частиц в течении очень малых времен только для отобранных событий

многоступенчатая управляемая лавинная камера. Она состоит из газового зазора для предварительного усиления, дрейфового зазора, управляющей сетки и лавинной камеры, в которой происходит окончательное усиление, если на управляющую сетку был подан импульс напряжения. С каждой проволоки лавинной камеры индуцированные сигналы поступают на входы линейных усилителей, затем на преобразователи амплитуда-число, с которых информация передается на ЭВМ, где строится распределение амплитуд сигналов, определяется его центр тяжести и по нему находится координата частицы. Разрешающее время такой камеры около 10 нс, т.е. поток частиц может достигать 108 частиц/с независимо от размеров камеры.

Недостатком такого устройства является большое количество электроники. Так, например, при размере камеры 100х100 см2 и объединении проволок катодной плоскости в группы шириной 4 мм и шагом 1 мм требуется 200 усилителей и 200 преобразователей амплитуда число. Кроме того, из-за необходимости производить вычисления координаты на ЭВМ, исключается возможность использования информации с камер для отбора событий перед записью в ЭВМ.

Задачей настоящего изобретения является сокращения числа каналов регистрирующей электроники, увеличение скорости обработки информации и определение координаты траектории частицы до записи в ЭВМ.

Для решения поставленной задачи предлагается устройство, содержащее многоступенчатую лавинную камеру, катодные проволоки которой соединены между собой линиями задержек, причем входной конец первой линии задержки и выходной конец последней линии задержки соединены каждый через усилитель со стартовом и стоповом входами время-амплитудного преобразователя.

На чертеже изображено заявляемое устройство.

Устройство для измерения координат заряженных частиц включает в себя многоступенчатую управляемую лавинную камеру 1 с катодными проволоками 2, линии задержек 3, усилители 4 и время-амплитудный преобразователь 4.

Устройство работает следующим образом. При прохождении частицы через многоступенчатую лавинную камеру 1 в ней возникает ионизация. Если событие удовлетворяет критериям отбора, вырабатываемым электроникой триггера, на камеру попадается сигнал, пропускающий электронное облако на катодные проволоки 2, где происходит усиление сигнала. Катодные проволоки 2 соединены между собой линиями задержек 3. Сигнал, возникающий на какой-то проволоке, будет распространяться по линиям задержек в противоположные направления, усилится и сформируется в стандартные сигналы усилителями 4 и затем поступит на стартовые и стоповые входы время-амплитудного преобразователя 5. По разности времени между этими сигналами определяется номер сработавшей проволоки (или координата траектории частицы).

Для пропорциональной камеры со съемом сигнала с помощью линии задержки для одной координаты требуется два канала регистрирующей электроники. При этом максимально допустимая загрузка (при удельной задержке 20 нс/см ) равна

устройство для измерения координат заряженных частиц, патент № 2084927

где L размер камеры.

Для лавинной камеры с управлением при шаге индукционных полосок 4 мм имеем:

устройство для измерения координат заряженных частиц, патент № 2084927

Для предлагаемого устройства максимальная загрузка равна:

устройство для измерения координат заряженных частиц, патент № 2084927

т. е. эта величина не зависит от размеров камеры. Так, например, для камеры с размерами L=200 см имеем N1max= 1,25устройство для измерения координат заряженных частиц, патент № 2084927105 частиц/c; N2max= 2устройство для измерения координат заряженных частиц, патент № 2084927105частиц/с; N3max= 5устройство для измерения координат заряженных частиц, патент № 2084927107 частиц/c..

Таким образом, объединение в одном устройстве двух известных решений позволяет получить устройство, обладающее новым важным свойством допустимая загрузка на 1 канал электроники не зависит от размеров камеры и уже при средних размерах камер на два порядка величины выше, чем в лавинной камере.

Класс G01T1/18 с помощью разрядных приборов, например счетчиков Гейгера

координатный газонаполненный детектор -  патент 2485547 (20.06.2013)
дрейфовая камера для работы в вакууме -  патент 2465620 (27.10.2012)
устройство для выработки триггера на множественность -  патент 2463626 (10.10.2012)
устройство для дистанционного обнаружения источников альфа-излучения -  патент 2461024 (10.09.2012)
способ электрической поверки войсковых измерителей мощности дозы гамма-излучения -  патент 2449315 (27.04.2012)
способ поиска радиоактивных объектов под водой и комплекс для реализации способа -  патент 2420762 (10.06.2011)
система обнаженных проводников и способ для считывания пучка электронов -  патент 2407040 (20.12.2010)
многослойный детектор и способ измерения потока электронов -  патент 2390041 (20.05.2010)
многослойный газовый электронный умножитель -  патент 2383035 (27.02.2010)
координатный газонаполненный детектор излучения -  патент 2339053 (20.11.2008)
Наверх