спеченный материал на основе меди для электрических контактов и способ его изготовления

Классы МПК:C22C9/00 Сплавы на основе меди
C22C1/04 порошковой металлургией
Автор(ы):, ,
Патентообладатель(и):Волков Николай Александрович,
Барковский Александр Иванович
Приоритеты:
подача заявки:
1994-06-16
публикация патента:

Изобретение относится к области порошковой металлургии. Целью изобретения является повышение технологических свойств шихты, а также повышение коммутационной износостойкости спеченного материала, изготовленного из нее. Указанная цель достигается тем, что спеченный материал на основе меди содержит по крайней мере один компонент, выбранный из группы: кадмий, никель, олово, цинк, графит, дополнительно содержит ванадий при следующем соотношении компонентов (мас.%): (5,0-15,0) ванадия, (0,3-3,0) по крайней мере одного компонента, выбранного из группы: кадмий, никель, олово, цинк или графит, медь - остальное. Предложенный материал имеет коммутационный износ (9,4-19,7)спеченный материал на основе меди для электрических   контактов и способ его изготовления, патент № 208371310-6 г/цикл. Указанная цель достигается также тем, что при изготовлении спеченного материала на основе меди, содержащего никель, в качестве связующего используют безводный уксуснокислый никель, а перед гранулированием шихту увлажняют. При этом шихта имеет текучесть 5,0-6,8 г/с. 2 с.п. ф-лы, 1 табл.
Рисунок 1

Формула изобретения

1. Спеченный материал на основе меди для электрических контактов, содержащий по крайней мере один компонент, выбранный из группы: кадмий, никель, олово, цинк, графит, отличающийся тем, что он дополнительно содержит ванадий при следующем соотношении компонентов, мас.

Ванадий 5 15

По крайней мере один компонент, выбранный из группы: кадмий, никель, олово, цинк, графит 0,3 3,0

Медь Остальное

2. Способ изготовления спеченного материала на основе меди для электрических контактов, содержащего никель, включающий введение связующего в порошок, гранулирование путем протирки через сито, термообработку, прессование и спекание в защитной атмосфере, отличающийся тем, что перед гранулированием проводят увлажнение смеси, а в качестве связующего используют безводный никель (II) уксуснокислый в количестве 0,3 3,0 мас. в пересчете на никель.

Описание изобретения к патенту

Изобретение относится к области порошковой металлургии, в частности к спеченным материалам на основе меди для электрических контактов, используемых в низковольтных коммутационных аппаратах, например, в контакторах, автоматических выключателях и др.

Известен спеченный материал на основе меди для электрических контактов, содержащий (мас.): (14,9-19,4) Ni, (20,2-29,4) Zn, (0,5-10) Nb и/или Ba, Cu

остальное.

Недостатком указанного материала является то, что он имеет недостаточно высокую коммутационную износостойкость.

Наиболее близким к заявляемому техническому решению является спеченный материал на основе меди, содержащий 1 30 мас. графита, до 20 мас. по крайней мере одного металла, выбранного из группы никель, олово, цинк или кадмий, медь остальное [1] Этот материал обладает низким и стабильным контактным сопротивлением. Недостатком его является то, что он имеет невысокую коммутационную износостойкость.

Известен способ изготовления шихты для спеченных контактов, в соответствии с которым в качестве связующего в смесь порошков вводят раствор поливинилового спирта, а затем шихту гранулируют путем протирки через сито и полученные гранулы прокаливают на воздухе [2]

Недостатком указанного способа является то, что с помощью поливинилового спирта можно гранулировать только такие смеси, компоненты которых допускают их термообработку на воздухе, например серебро и оксид кадмия. При термообработке шихты в защитной атмосфере происходит термическое разложение поливинилового спирта с выделением мелкодисперсного углерода на поверхности частиц компонентов шихты, который препятствует их спеканию, образованию плотных изделий и вносит дополнительную примесь (углерод) в готовое изделие.

Целью изобретения является повышение технологических свойств шихты, а также повышение коммутационной износостойкости спеченного материала для электрических контактов.

Указанная цель достигается тем, что в шихту в качестве связующего вводят уксуснокислый никель, шихту увлажняют, гранулируют путем протирки через сито, проводят термообработку гранул, прессуют их и спекают в защитной атмосфере.

Техническое решение, в соответствии с которым в порошковую смесь вводят связующее, например поливиниловый спирт, известно. Однако при спекании прессовок из такой шихты в защитной атмосфере в готовое изделие вносится дополнительная примесь (углерод). Указанный недостаток устраняется в заявляемом техническом решении за счет использования уксуснокислого никеля. При спекании прессовок в защитной атмосфере уксуснокислый никель разлагается с выделением единственного нелетучего продукта порошка никеля. Поскольку никель входит в состав спеченного материала, то дополнительных примесей в данном случае в него не вносится. Кроме того, использование уксуснокислого никеля в качестве связующего, как частное решение, при известности использования различных связующих для повышения текучести шихты приводит и к дополнительному эффекту, а именно: увеличению плотности материала при спекании прессовок и как следствие увеличению его износостойкости. Возможность достижения этого эффекта не вытекает из раскрытия содержания общего решения, что позволяет сделать вывод о соответствии заявляемого решения критерию "изобретательский уровень".

Указанная цель достигается также тем, что спеченный материал на основе меди, содержащий по крайней мере один компонент, выбранный из группы: кадмий, никель, олово, цинк, графит дополнительно содержит ванадий при следующем соотношении компонентов (мас.): (5,0-15,0) ванадия, (0,3-3,0) по крайней мере одного компонента, выбранного из группы: кадмий, никель, олово, цинк или графит, медь остальное.

Ванадий формирует гетерогенную структуру композиции, повышает ее твердость и электроэрозионную стойкость.

Кадмий и цинк испаряются под воздействием электрической дуги и обеспечивают аблирующий эффект, снижающий перегревы поверхности контактов и их эрозионный износ.

Олово снижает контактное сопротивление.

Никель и графит ускоряют движение опорного пятна дуги по поверхности контактов, ускоряют перескок пятна по частицам включений и снижают перегревы контактов. Кроме того, частицы графита под воздействием высоких температур образуют оксид углерода (CO), который, обладая восстановительными способностями, предохраняет поверхность контактов от окисления и стабилизирует переходное сопротивление.

Сопоставительный анализ заявляемого решения с прототипом позволяет сделать вывод о том, что заявляемый состав спеченного материала на основе меди для электрических контактов отличается от известного тем, что содержит новый компонент ванадий и иное, нежели в прототипе, соотношение известных компонентов (кадмия, никеля, олова, цинка и графита). Заявляемое решение, таким образом, соответствует критерию "новизна".

Анализ составов материалов на основе меди для электрических контактов показал, что сплавы на основе меди, содержащие цинк и никель, известны. Использование в заявляемом техническом решении ранее не использовавшегося ванадия совместно по крайней мере с одним из известных компонентов сплавов на основе меди (никелем или цинком) приводит к повышению коммутационной износостойкости контактов. Подобный характер поведения спеченного материала в электрической дуге не мог быть предсказан на основе известных представлений.

Таким образом, заявляемый состав придает материалу для электрических контактов новые свойства, не следующие явным образом из уровня техники, что позволяет сделать вывод о соответствии заявляемого решения критерию "изобретательский уровень".

Пример 1. Перемешивают 88,00 г порошка меди марки ПМС-1; 10,50 г порошка ванадия крупностью 56 мкм, 0,57 г оксида кадмия (квалификация "4", ГОСТ 11120-75, 0,5 г кадмия по массе), 3,01 г никеля (II) уксуснокислого (квалификация "4", ТУ 6-09-3848-87; 1,00 г никеля по массе), предварительно обезвоженного при температуре 150-200oC, увлажняют водоспиртовой смесью (1:1 по объему) из расчета 11,5 мл на 100 г шихты, гранулируют путем протирки через сито N 063, сушат в сушильном шкафу, прессуют из полученной шихты контакты, спекают их в атмосфере водорода и калибруют.

Изготовленные контакты имеют диаметр 8,0 мм, высоту 2,0 мм и соответствуют ГОСТ 3884-77 (типоразмер ПП0820 и СП 0820).

Электроэрозионный износ определяют на стенде У-1, на котором контакты коммутируют цепь переменного тока с параметрами: 380 В, 32 А, 50 Гц, coспеченный материал на основе меди для электрических   контактов и способ его изготовления, патент № 2083713=0,8. Разведение контактов осуществляется электромагнитом на расстояние 7,0 мм со средней скоростью 0,3 м/с, а сведение при помощи пружины, которая обеспечивает контактное нажатие 5 H. Продолжительность испытаний каждой контактной пары одинакового состава 10 тыс. циклов включение/ отключение.

Электроэрозионный износ (коммутационную износостойкость) определяют по уменьшению суммарной массы пары контактов за время испытаний и измеряют его в г/цикл.

Результаты определения коммутационного износа приведены в таблице.

Примеры 2-5. Аналогичным образом (пример 1) изготавливают и испытывают контакты, содержащие 4,0; 5,0; 15,0 и 16,0 мас. ванадия.

Пример 6. Перемешивают 89,2 г порошка меди, 10,5 г порошка ванадия и 0,90 г безводного никеля уксуснокислого (0,3 г никеля), увлажняют смесь водно-спиртовой смесью, гранулируют путем протирки через сито, сушат, прессуют из полученной шихты контакты, спекают их в атмосфере водорода, калибруют и испытывают на стенде У-1.

Результаты испытаний приведены в таблице.

Примеры 7, 8. Аналогичным образом (пример 6) изготавливают и испытывают контакты, содержащие 10,5 мас. ванадия и 1,5 или 3,0 мас. никеля.

Пример 9. Перемешивают 89,2 г порошка меди, 10,5 г порошка ванадия и 0,34 г порошка оксида кадмия (0,3 г кадмия), прессуют из полученной шихты контакты, спекают их в атмосфере водорода, калибруют и испытывают на стенде У-1.

Результаты испытаний приведены в таблице.

Примеры 10-20. Аналогичным образом (пример 9) изготавливают и испытывают контакты, составы и результаты испытаний которых приведены в таблице.

Текучесть шихты, приготовленной в соответствии с примерами 1-20, определяют по методу, основанному на регистрации времени истечения навески порошка из конусной стеклянной воронки с углом 60o и диаметром выходного отверстия 5,0 мм. Хвостик воронки срезан на расстоянии 3 мм от вершины ее конической части.

Результаты определения текучести шихты приведены в таблице.

Как следует из таблицы, контактные материалы предлагаемого состава (примеры 1, 3, 4, 6-20) обладают повышенной коммутационной износостойкостью (пониженным коммутационным износом). При содержании ванадия за заявляемым нижним (п. 2) и верхним (п. 5) пределами коммутационный износ увеличивается до уровня износа материала прототипа (п. 21-24).

Таким образом, низкий коммутационный износ (высокую коммутационную износостойкость) имеют материалы, содержащие 5,0 15,0 мас. ванадия и 0,3 - 3,0 мас. по крайней мере одного компонента, выбранного из группы: кадмий, никель, олово, цинк или графит, медь остальное.

Как следует из приведенных в таблице данных, шихта, приготовленная в соответствии с заявляемым способом (п.п. 1-8), имеет высокую текучесть, что повышает ее технологические свойства.

Таким образом, использование предлагаемого технического решения позволяет повысить технологические свойства шихты, в частности улучшить заполнение пресс-форм при объемной дозировке шихты, автоматизировать процесс прессования контактов из нее; повысить срок службы НВА за счет повышения коммутационной износостойкости контактов.

Класс C22C9/00 Сплавы на основе меди

порошковый антифрикционный материал -  патент 2528542 (20.09.2014)
сплав на основе меди -  патент 2528530 (20.09.2014)
композиционный электроконтактный материал на основе меди и способ его получения -  патент 2525882 (20.08.2014)
сплав на основе меди -  патент 2525876 (20.08.2014)
материал подшипника скольжения -  патент 2524812 (10.08.2014)
шихта для изготовления материала для сильноточных электрических контактов и способ изготовления материала -  патент 2523156 (20.07.2014)
способ изготовления порошкового композита сu-cd/nb для электроконтактного применения -  патент 2516236 (20.05.2014)
медный сплав и способ получения медного сплава -  патент 2510420 (27.03.2014)
обрабатываемый резанием сплав на основе меди и способ его получения -  патент 2508415 (27.02.2014)
сплав на основе меди -  патент 2508414 (27.02.2014)

Класс C22C1/04 порошковой металлургией

способ получения алюминиевого композиционного материала с ультрамелкозернистой структурой -  патент 2529609 (27.09.2014)
способ приготовления твердосплавной шихты с упрочняющими частицами наноразмера -  патент 2525192 (10.08.2014)
порошковый износо- корозионно-стойкий материал на основе железа -  патент 2523648 (20.07.2014)
способ получения многослойного композита на основе ниобия и алюминия с использованием комбинированной механической обработки -  патент 2521945 (10.07.2014)
жаропрочный порошковый сплав на основе никеля, стойкий к сульфидной коррозии и изделие, изготовленное из него -  патент 2516681 (20.05.2014)
способ испытания на сульфидную коррозию жаропрочных порошковых никелевых сплавов -  патент 2516271 (20.05.2014)
способ получения изделий из сложнолегированных порошковых жаропрочных никелевых сплавов -  патент 2516267 (20.05.2014)
способ изготовления порошкового композита сu-cd/nb для электроконтактного применения -  патент 2516236 (20.05.2014)
способ получения порошков сплавов на основе титана, циркония и гафния, легированных элементами ni, cu, ta, w, re, os и ir -  патент 2507034 (20.02.2014)
способы производства нефтепромысловых разлагаемых сплавов и соответствующих продуктов -  патент 2501873 (20.12.2013)
Наверх