детонационная камера пульсирующего двигателя

Классы МПК:F02C5/10 рабочее тело образует резонирующий или колеблющийся столб газа, те камеры сгорания не имеют управляющих клапанов, например использование эффекта Гельмгольца
F02K7/04 с резонансными камерами сгорания 
Автор(ы):, , ,
Патентообладатель(и):Саратовская научно-производственная фирма "Растр"
Приоритеты:
подача заявки:
1993-06-10
публикация патента:

Использование: в пульсирующих воздушно-реактивных двигателях с резонансными камерами сгорания. Сущность изобретения: детонационная камера пульсирующего двигателя содержит корпус с насадком 3, коаксиальную полузамкнутую полость 1, узел 4 подвода продуктов газогенерации, устройство создания ударных волн, а также струйный ускоритель 5 воздушного потока, выполненный в виде осесимметричного канала, заканчивающегося сверхзвуковым соплом, переходящим в полузамкнутую полость. 1 ил.
Рисунок 1

Формула изобретения

Детонационная камера пульсирующего двигателя, содержащая корпус с насадком, коаксиальную полузамкнутую полость, узел подвода продуктов газогенерации и устройство создания ударных волн, отличающаяся тем, что камера снабжена струйным ускорителем воздушного потока, выполненным в виде осесимметричного канала, заканчивающегося сверхзвуковым соплом, переходящим в полузамкнутую полость.

Описание изобретения к патенту

Изобретение относится к пульсирующим воздушно-реактивным двигателям с резонансными камерами сгорания.

Известны детонационные двигатели детонационного горения, в которых "детонационная камера содержит плоскую или специальную форму передней стенки, переходящую в цилиндрическую форму, а противоположный (задний) конец камеры открыт и снабжен обычным соплом типа сопла ракетного двигателя". (Применение пульсирующих двигателей с детонационным горением в секретных летательных аппаратах. БИНТИ-1, "Авиация и космос N 8").

Наиболее близким по принципу работы и техническому исполнению к заявляемому изобретению является камера сгорания со сверхзвуковой частотой истечения продуктов сгорания (патент Великобритании N 1541408, кл. F 02 K 7/10, 1968).

Задача изобретения состоит в повышении надежности и экономичности работы пульсирующего двигателя детонационного горения (ПДДГ).

Решение поставленной задачи осуществляется за счет более полного (ударного) дожигания продуктов сгорания ракетного топлива в детонационной камере ПДДГ и создания более благоприятных условий для возникновения детонации.

Поставленная задача решается тем, что в устройство для создания ударных волн дополнительно введен струйный ускоритель в виде осесимметричного канала, выполненного в центральном теле камеры двигателя и заканчивающегося сверхзвуковым соплом, переходящим в полузамкнутую полость и соединяющий ее с источником воздуха.

На чертеже представлена детонационная камера ПДДГ, которая состоит из полузамкнутой полости 1, выполненной в центральном теле 2 двигателя, корпуса двигателя с насадком 3, узла подвода продуктов неполного сгорания рабочего тела (газогенерации) 4 и струйного ускорителя 5.

Работает детонационная камера следующим образом. Одновременно с подачей продуктов газогенерации через узел подвода 4 в детонационную камеру в виде сходящейся к центру сверхзвуковой, плоской, кольцевой струи через струйный ускоритель 5 в нее от внешнего источника подается воздух. Струйный ускоритель 5 выполнен в центральном теле камеры двигателя в виде осесимметричного канала и заканчивается сверхзвуковым соплом, переходящим в полузамкнутую полость. Наличие канала позволяет соединить объем детонационной камеры с источником воздуха, а наличие сверхзвукового сопла достичь сверхзвуковой подачи воздуха.

При соударении двух сверхзвуковых потоков: воздуха и рабочего тела, возникает система скачков уплотнений (ударных волн), в которых происходит резкое повышение температуры, давления и выделение большого количества тепла. Это приводит к детонационному (сверхзвуковому) горению продуктов газогенерации в среде воздуха.

Детонационная волна сжимает поступающую в детонационную камеру смесь продуктов газогенерации и воздуха и поддерживает сверхзвуковое горение. Рост давления, производимый в ходе этой фазы, является самым важным условием процесса детонационного горения при постоянном ее объеме.

В связи с тем, что скорость распространения детонации значительно больше скорости истечения продуктов газогенерации и воздуха, детонационная волна будет перемещаться навстречу движения потоков и взаимодействовать со стенками камеры. Когда волна достигнет тяговой стенки, находящейся в передней части камеры, она рикошетирует от нее, ускоряя продукты сгорания в сторона сопла. Таким образом, отраженная волна, истекая через открытый конец полузамкнутой полости наружу, приводит к увеличению осевой составляющей силы тяги, что в свою очередь приводит к повышению экономичности работы двигателя как за счет более полного ударного детонационного сгорания продуктов газогенерации в среде воздуха, так и за счет дополнительного разгона продуктов полного сгорания отраженной детонационной волной. После этого цикл повторяется.

Использование струйного усилителя 5 в ПДДГ приводит к повышению надежности детонационного воспламенения и детонационного горения. Это объясняется следующими причинами:

Во-первых, дополнительно подается в составе забортного воздуха кислород окружающей среды, который является окислителем для продуктов неполного сгорания, что приводит к интенсивному протеканию химических реакций с большим выделением тепла.

Во-вторых, соударение двух сверхзвуковых потоков обязательно приводит к возникновению скачков уплотнений, которые остаются в детонационной камере во время всей работы двигателя.

Таким образом, включение струйного ускорителя 5 в работу ПДДГ приводит к повышению экономичности и надежности его работы.

Кроме того, введение струйного ускорителя в схему ПДДГ позволяет плавно изменять тягу двигателя в широких пределах. Это можно реализовать как за счет изменения суммарного расхода продуктов неполного сгорания и воздуха, так и за счет их соотношения. В любом случае это приводит к изменению геометрической формы скачков уплотнений, которые определяют объем детонационной камеры и к изменению частоты детонации, что в свою очередь приводит к изменению силы тяги.

Таким образом, осуществляя изменение коэффициента соотношения расходов продуктов неполного сгорания, можно добиться наиболее оптимальных условий для возникновения и поддержания надежных детонационных процессов в камере ПДДГ.

Класс F02C5/10 рабочее тело образует резонирующий или колеблющийся столб газа, те камеры сгорания не имеют управляющих клапанов, например использование эффекта Гельмгольца

способ работы газового универсально-турбинного двигателя -  патент 2190107 (27.09.2002)
пульсирующий гиперзвуковой прямоточный воздушно-реактивный двигатель -  патент 2059852 (10.05.1996)
способ преобразования тепловой энергии в механическую в газотурбинном двигателе и газотурбинный двигатель -  патент 2037060 (09.06.1995)

Класс F02K7/04 с резонансными камерами сгорания 

пульсирующая детонационная установка для создания силы тяги -  патент 2526613 (27.08.2014)
пульсирующий детонационный двигатель -  патент 2490498 (20.08.2013)
пульсирующий воздушно-реактивный двигатель со стабилизацией горения на соударяющихся струйных течениях -  патент 2468236 (27.11.2012)
пульсирующий воздушно-реактивный двигатель (пуврд) -  патент 2468235 (27.11.2012)
способ функционирования пульсирующего детонационного двигателя (варианты) -  патент 2446306 (27.03.2012)
сверхзвуковой прямоточный воздушно-реактивный двигатель с пульсирующим режимом горения (спврд с прг) и способ его работы -  патент 2446305 (27.03.2012)
пульсирующий воздушно-реактивный детонационный двигатель -  патент 2443893 (27.02.2012)
пульсирующий воздушно-реактивный двигатель -  патент 2435978 (10.12.2011)
пульсирующий воздушно-реактивный двигатель -  патент 2435977 (10.12.2011)
двигатель с импульсной детонацией, работающий на воздушно-топливной смеси -  патент 2435060 (27.11.2011)
Наверх